Peptide receptor-targeted radionuclide therapy is nowadays also being performed with DOTA-conjugated peptides, such as [DOTA(0),Tyr(3)]octreotate, labelled with radionuclides like (177)Lu. The incorporation of (177)Lu is typically >/=99.5%; however, since a total patient dose can be as high as 800 mCi, the amount of free (177)Lu(3+) (= non-DOTA-incorporated) can be substantial. Free (177)Lu(3+) accumulates in bone with unwanted irradiation of bone marrow as a consequence. (177)Lu-DTPA is reported to be stable in serum in vitro, and in vivo it has rapid renal excretion. Transforming free Lu(3+) to Lu-DTPA might reroute this fraction from accumulation in bone to renal clearance. We therefore investigated: (a) the biodistribution in rats of (177)LuCl(3), [(177)Lu-DOTA(0),Tyr(3)]octreotate and (177)Lu-DTPA; (b) the possibilities of complexing the free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate to (177)Lu-DTPA prior to intravenous injection; and (c) the effects of free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate, in the presence and absence of DTPA, on the biodistribution in rats. (177)LuCl(3) had high skeletal uptake (i.e. 5% ID per gram femur, with localization mainly in the epiphyseal plates) and a 24-h total body retention of 80% injected dose (ID). [(177)Lu-DOTA(0),Tyr(3)]octreotate had high and specific uptake in somatostatin receptor-positive tissues, and 24-h total body retention of 19% ID. (177)Lu-DTPA had rapid renal clearance, and 24-h total body retention of 4% ID. Free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate could be complexed to (177)Lu-DTPA. Accumulation of (177)Lu in femur, blood, liver and spleen showed a dose relation to the amount of free (177)Lu(3+), while these accumulations could be normalized by the addition of DTPA. After labelling [DOTA(0),Tyr(3)]octreotate with (177)Lu the addition of DTPA prior to intravenous administration of [(177)Lu-DOTA(0),Tyr(3)]octreotate is strongly recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-002-1054-4 | DOI Listing |
Nucl Med Biol
April 2013
Philips Research, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands.
Introduction: We report on our evaluation of the strain-promoted cyclooctyne-azide cycloaddition reaction for use in tumor pretargeting, comprising a side-by-side comparison of probes 1-3 bearing three distinct cyclooctyne moieties based respectively on the 1st and 2nd generation difluorinated cyclooctyne and the 1st generation dibenzocyclooctyne.
Methods: The probes were synthesized and labeled with (177)Lu with high yields. The probe stability and reactivity towards azides were evaluated in PBS and mouse serum, and their blood clearance, biodistribution and in vivo reactivity were evaluated in tumor-free mice.
Eur J Nucl Med Mol Imaging
February 2003
Department of Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
Peptide receptor-targeted radionuclide therapy is nowadays also being performed with DOTA-conjugated peptides, such as [DOTA(0),Tyr(3)]octreotate, labelled with radionuclides like (177)Lu. The incorporation of (177)Lu is typically >/=99.5%; however, since a total patient dose can be as high as 800 mCi, the amount of free (177)Lu(3+) (= non-DOTA-incorporated) can be substantial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!