Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) < soil < soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2003.2400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!