Numerous cellular proteins are able to localize to the nucleus due to the fact that they possess a nuclear localization signal (NLS) in their amino acid sequence. Nuclear localization sequences recognized by the importin alpha/beta heterodimer are found in cellular proteins capable of performing many diverse functions, ranging from chromatin remodeling to cell cycle regulation. Evidence has been presented that suggests individual importin alpha homologues are present at varying levels in different adult tissues. Other data have shown that specific subsets of NLSs found in different cellular proteins are recognized by individual importin alpha homologues with varying affinities. This evidence led us to hypothesize that due to the specific cargoes they carry, the mammalian embryo has different developmental requirements for individual importin alpha homologues. The results of the studies presented here indicate that importin alpha/beta-mediated import occurs throughout early cleavage in the porcine embryo, as determined by a reporter protein microinjection assay, and that multiple importin alpha homologues are present throughout early cleavage, as determined by immunocytochemical analysis. An RNA interference approach was used in an attempt to determine the developmental requirements for specific importin alpha homologues during early cleavage in the porcine embryo. Results from this study showed that fertilized porcine embryos injected with double stranded RNA (dsRNA) corresponding to the importin alpha homologue karyopherin alpha3 had significantly fewer nuclei following four days of culture than did embryos injected with dsRNA for another importin alpha homologue, karyopherin alpha2, or two control groups. This is the first report indicating that mammalian embryos may have differential developmental requirements for specific nuclear trafficking pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.10238 | DOI Listing |
FASEB J
January 2025
Prostate Cancer/Genitourologic Program, Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan. Electronic address:
Importin α is a crucial player in the nucleocytoplasmic transport of nuclear localization signal (NLS)-containing cargo proteins and is suggested to bind to DNA directly. We hypothesized that importin α, after binding to DNA, may move along DNA via sliding or hopping. We investigated the movement dynamics of importin αs fused to AcGFP along DNA using single-molecule fluorescence microscopy and single-tethered DNA arrays.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
March 2025
Department of Orthopedics, Shenzhen Third People's Hospital, Shenzhen, China.
Osteoporosis is mainly caused by an imbalance in osteoclast and osteoblast regulation, resulting in an imbalance in bone homeostasis. Ginsenoside Rg3 (Rg3) has been reported to have a therapeutic effect on alleviating osteoporosis. Nonetheless, the underlying mechanisms have not been completely elucidated.
View Article and Find Full Text PDFCells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!