Through electrodes implanted for deep brain stimulation in three patients (5 sides) with Parkinson's disease, we recorded the electrical activity from the human basal ganglia before, during and after voluntary contralateral finger movements, before and after L-DOPA. We analysed the movement-related spectral changes in the electroencephalographic signal from the subthalamic nucleus (STN) and from the internal globus pallidus (GPi). Before, during and after voluntary movements, signals arising from the human basal ganglia contained two main frequencies: a high beta (around 26 Hz), and a low beta (around 18 Hz). The high beta (around 26 Hz) power decreased in the STN and GPi, whereas the low beta (around 18 Hz) power decrease was consistently found only in the GPi. Both frequencies changed their power with a specific temporal modulation related to the different movement phases. L-DOPA specifically and selectively influenced the spectral power changes in these two signal bands.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s100720200089DOI Listing

Publication Analysis

Top Keywords

human basal
12
basal ganglia
12
activity human
8
deep brain
8
brain stimulation
8
parkinson's disease
8
high beta
8
low beta
8
beta power
8
movement-related modulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!