Angular-profile tuning of guided waves in hollow cylinders using a circumferential phased array.

IEEE Trans Ultrason Ferroelectr Freq Control

Matec Instrument Companies, Inc., 56 Hudson Street, Northboro, MA 01532, USA.

Published: December 2002

Angular-profile tuning of guided waves in hollow cylinders is implemented by using partial loading of the elements in a circumferentially placed phased array. Each partial loading element generates nonaxisymmetric guided waves in a pipe. In earlier work, numerical calculations and experiments have shown that, for nonaxisymmetric guided waves, circumferential distribution of particle displacements (i.e., the angular profile) changes with propagation distance, frequency, and mode. To change the angular profile at a certain distance, either frequency or mode has to be changed for a single partial loading element. This is not the case, however, for a circumferential phased array. The total angular profile of a circumferential array is the superposition of contributions from all elements. If given the knowledge of the angular profile for a single element, the total guided wave angular profile can be controlled and thus focused at any specific circumferential location by a circumferentially placed phased array with adjustable voltage level and phase inputs. This angular profile tuning technique can be used for implementing a circumferential scan with focused, guided wave beams, which leads to the detection of smaller defects as a result of stronger focused beams. Algorithms and specific nondestructive evaluation (NDE) applications for pipe inspection using this technique are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tuffc.2002.1159849DOI Listing

Publication Analysis

Top Keywords

angular profile
24
guided waves
16
phased array
16
partial loading
12
angular-profile tuning
8
tuning guided
8
waves hollow
8
hollow cylinders
8
circumferential phased
8
circumferentially phased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!