A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recombinant carbazole-degrading strains for enhanced petroleum processing. | LitMetric

Recombinant carbazole-degrading strains for enhanced petroleum processing.

J Ind Microbiol Biotechnol

Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.

Published: January 2003

Biotechnological upgrading of fossil fuels is of increasing interest as remaining stocks of petroleum show increasing levels of contaminants such as heavy metals, sulfur and nitrogen-containing heteroaromatic compounds. Carbazole is of particular interest as a major petroleum component known to reduce refining yields through catalyst poisoning. In this study, the biotransformation of carbazole was successfully demonstrated in a liquid two-phase system, when solubilized in either 1-methylnaphthalene or in diesel fuel. The effects of solvent toxicity were investigated by expressing the carbazole-transformation genes from MB1332, a rifampicin-resistant derivative of Pseudomonas sp. LD2, in a solvent-resistant heterologous host, P. putida Idaho [1]. This solvent-resistant strain successfully degraded carbazole solubilized in 1-methylnaphthalene and in the presence of 10 vol% xylenes similar to the non-recombinant strain Pseudomonas sp. LD2. Identification of a suitable recombinant host, however, was essential for further investigations of partial pathway transformations. Recombinant P. putida Idaho expressing only the initial dioxygenase enzymes transformed carbazole to an intermediate well retained in the oil phase. Partial carbazole transformation converts carbazole to non-aromatic species; their effect is unknown on refinery catalyst poisoning, but would allow almost complete retention of carbon content and fuel value.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-002-0005-1DOI Listing

Publication Analysis

Top Keywords

catalyst poisoning
8
solubilized 1-methylnaphthalene
8
pseudomonas ld2
8
putida idaho
8
carbazole
6
recombinant carbazole-degrading
4
carbazole-degrading strains
4
strains enhanced
4
enhanced petroleum
4
petroleum processing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!