So far only little data have been available concerning the eliciting capacity of well defined glycan molecules isolated from plant pathogens. This study brings new information about changes in plant cells caused by fungal pathogens. Sugar fractions derived from glycoproteins isolated from the fungus Fusarium sp. M7-1 have been tested here as signaling molecules. The ability of three O-glycan fractions (named in this work inducer I, II, III) to trigger responses in Rubus protoplasts has been examined. It was found that inducer III was the most efficient as it elicited changes in the levels of phenylpropanoid pathway intermediates in relation to phenylalanine-ammonia lyase (PAL) activation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rubus protoplasts
8
fusarium m7-1
8
inducer iii
8
high performance
4
performance liquid
4
liquid chromatography
4
chromatography photodiode
4
photodiode array
4
array detection
4
detection ferulic
4

Similar Publications

So far only little data have been available concerning the eliciting capacity of well defined glycan molecules isolated from plant pathogens. This study brings new information about changes in plant cells caused by fungal pathogens. Sugar fractions derived from glycoproteins isolated from the fungus Fusarium sp.

View Article and Find Full Text PDF

Previous work showed that the fucose-->galactose moiety of the xyloglucan nonasaccharide XXFG is responsable for its biological activity. We used this side chain of XXFG (alpha-L-Fuc (1-->2)-beta-D-Gal (1-->)) in ligand-binding experiments to demonstrate its role as a signal molecule in plant cells. Proteins solubilized from plasma membrane enriched fractions isolated from Rubus fruticosus protoplasts were tested for their ability to bind the side chain of XXFG, using a digoxigenin- or biotin-conjugated neoglycoprotein specific for 2'-fucosyl-lactose in blots and k-ELISA tests.

View Article and Find Full Text PDF

A plant surface protein sharing structural properties with animal integrins.

Eur J Biochem

May 1998

Laboratoire de Génétique Moléculaire des Plantes, UMR CNRS 5575, Université Joseph Fourier, CERMO, Grenoble, France.

Using a polyclonal antibody (P23) generated against the human platelet integrin aIIb beta3 and a FITC-conjugate secondary antibody, fluorescence is observed at the surface of protoplasts isolated from Arabidopsis thaliana and Rubus fruticosus. Arabidopsis thaliana cells grown in suspension culture containing P23 and glycylarginylglycylaspartylserine (GRGDS), a synthetic peptide containing the RGD sequence found in many extracellular matrix adhesive proteins demonstrated aberrant cell wall/plasma membrane interactions and organization. When glycoproteins from these plants, purified on a concanavalin A Sepharose 4B, were subjected to SDS/PAGE and Western blotting, under reduced and non-reduced conditions, immunoblots probed with P23 revealed bands in both species.

View Article and Find Full Text PDF

Treatment of the xyloglucan isolated from the seeds of Hymenaea courbaril with Humicola insolens endo-1,4-beta-d-glucanase I produced xyloglucan oligosaccharides, which were then isolated and characterized. The two most abundant compounds were the heptasaccharide (XXXG) and the octasaccharide (XXLG), which were examined by reference to the biological activity of other structurally related xyloglucan compounds. The reduced oligomer (XXLGol) was shown to promote growth of wheat (Triticum aestivum) coleoptiles independently of the presence of 2, 4-dichlorophenoxyacetic acid (2,4-D).

View Article and Find Full Text PDF

Two rhamnogalacturonide tetrasaccharides isolated from semi-retted flax fibers are signaling molecules in Rubus fruticosus L. cells.

Plant Physiol

October 1997

Centre de Recherches sur les Macromolécules Végétales-Centre National de la Recherche Scientifique, Associé à l'Université Joseph Fourier, Grenoble, France.

Water extraction of semi-retted flax (Linum usitatissimum L.) fiber bundles yielded a mixture of pectic oligosaccharides and two acidic rhamnogalacturonide tetrasaccharides that were separated by size-exclusion chromatography. One- and two-dimensional nuclear magnetic resonance studies and fast atom bombardment-mass spectrometry experiments indicated that the two tetrasaccharides have a common primary structure, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!