A candidate tumor suppressor gene, p33ING1, was previously identified by using the genetic suppressor element methodology. p33ING1 cooperates with p53 and plays a significant role in p53-mediated cellular processes. Recently, we have identified p33ING2, which shows a sequence homology similar to p33ING1 and modulates p53 function. In the present study, we identified and characterized another 'ING family' gene. The estimated molecular weight of the encoded protein is 46.8 kDa, thus, we named it p47ING3. The p47ING3 gene is located at chromosome 7q31.3 and consists of 12 exons that encode 418 amino acids. A computational domain search revealed a C-terminal PHD-finger motif. Such motifs are common in proteins involved in chromatin remodeling. p47ING3 is highly expressed in some normal human tissues or organs, including the spleen, testis, skeletal muscle, and heart. p47ING3 expression levels varied among cancer cell lines. p47ING3 overexpression resulted in a decreased population of cells in S phase, a diminished colony-forming efficiency, and induced apoptosis in RKO cells, but not in RKO-E6 cells with inactivated p53. p47ING3 activates p53-transactivated promoters, including promoters of p21/waf1 and bax. Thus, we have isolated a novel ING family gene, p47ING3, which modulates p53-mediated transcription, cell cycle control, and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206115 | DOI Listing |
Cytoskeleton (Hoboken)
November 2024
Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
Previous reports from our laboratory describing the formation of myofibrils in cultured embryonic cardiac and skeletal muscle cells have proposed that myofibrillogenesis occurs in three steps of increasing protein organization: beginning with premyofibrils, followed by nascent myofibrils, and ending in mature myofibrils. Inhibitors of the ubiquitin proteasome system (UPS) prevented nascent myofibrils from progressing directly to mature myofibrils in cultured cardiac and skeletal muscle cells, supporting a three-step model of assembly in which some of the proteins in nascent myofibrils are proteolyzed to allow the assembly of mature myofibrils. Application of UPS inhibitors on cultured muscle cells suggests possible explanations for the off-target cardiac and skeletal muscle adverse effects of UPS drugs, which are used on cancer patients.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Nat Commun
October 2024
Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
Immunotherapy successfully complements traditional cancer treatment. However, primary and acquired resistance might limit efficacy. Reduced antigen presentation by MHC-I has been identified as potential resistance factor.
View Article and Find Full Text PDFJ Biol Chem
November 2024
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China; Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China. Electronic address:
Acta Biochim Biophys Sin (Shanghai)
September 2024
Department of Radiation Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) is involved in tumorigenicity through DNA methylation in various cancers, including breast cancer. This study aims to investigate the regulatory mechanisms of UHRF1 in breast cancer progression. Herein, we show that UHRF1 is upregulated in breast cancer tissues and cell lines as measured by western blot analysis and immunohistochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!