Noradrenaline activation of sensory somata that project in damaged peripheral nerves has been postulated to underlie sympathetically-mediated pain. Intracellular recordings from some neurones with myelinated axons in acutely isolated rat dorsal root ganglia showed small prolonged depolarizations to brief applications of 0.1-5 mM noradrenaline whether or not the spinal nerve had been transected. Similar responses were evoked to noradrenaline when phentolamine was present, and also to 1-5 mM catechol, but not 1 mM clonidine, implying the responses were not adrenoceptor-mediated. In extracellular recordings from similar preparations after sciatic transection, many spontaneously active myelinated dorsal root axons were excited by noradrenaline and other sympathomimetics. Silent axons in injured or control ganglia did not respond. Thus, non-specific depolarizations may activate neurones that are hyperexcitable after a lesion but activation of neuronal alpha-adrenoceptors by sympathetically-released noradrenaline seems unlikely.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200301200-00002DOI Listing

Publication Analysis

Top Keywords

dorsal root
8
noradrenaline
5
responses sympathomimetics
4
sympathomimetics rat
4
rat sensory
4
sensory neurones
4
neurones nerve
4
nerve transection
4
transection noradrenaline
4
noradrenaline activation
4

Similar Publications

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Fundamentals of intervertebral disc degeneration and related discogenic pain.

World J Orthop

January 2025

Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.

Lumbar intervertebral disc degeneration is thought to be the main cause of low back pain, although the mechanisms by which it occurs and leads to pain remain unclear. In healthy adult discs, vessels and nerves are present only in the outer layer of the annulus fibrosus and in the bony endplate. Animal models, and histological and biomechanical studies have shown that annulus tear or endplate injury is the initiating factor for painful disc degeneration.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.

View Article and Find Full Text PDF

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!