Nitrate-contaminated groundwater samples were analysed for nirK and nirS gene diversity. The samples differed with respect to nitrate, uranium, heavy metals, organic carbon content, pH and dissolved oxygen levels. A total of 958 nirK and 1162 nirS clones were screened by restriction fragment length polymorphism (RFLP) analysis: 48 and 143 distinct nirK and nirS clones, respectively, were obtained. A single dominant nirK restriction pattern was observed for all six samples and was 83% identical to the Hyphomicrobium zavarzinii nirK gene. A dominant nirS pattern was observed for four of the samples, including the background sample, and was 95% identical to the nirS of Alcaligenes faecalis. Diversity indices for nirK and nirS sequences were not related to any single geochemical characteristic, but results suggested that the diversity of nirK genes was inversely proportional to the diversity of nirS. Principal component analysis (PCA) of the sites based on geochemistry grouped the samples by low, moderate and high nitrate but PCA of the unique operational taxonomic units (OTUs) distributions grouped the samples differently. Many of the sequences were not closely related to previously observed genes and some phylogenetically related sequences were obtained from similar samples. The results indicated that the contaminated groundwater contained novel nirK and nirS sequences, functional diversity of both genes changed in relation to the contaminant gradient, but the nirK and nirS functional diversity was affected differently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1462-2920.2003.00393.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!