After biological control of Tetranychus urticae using Phytoseiulus persimilis, a latent mite pest, Eotetranychus asiaticus, was found on strawberries growing in a plastic greenhouse in western Japan. To determine whether the release of P. persimilis, an exotic natural enemy of T. urticae, enhanced the occurrence of the latent pest, the efficiency of P. persimilis in controlling E. asiaticus was compared with the efficiency of two indigenous phytoseiid mites, Amblyseius californicus and A. womersleyi, under laboratory conditions. Phytoseiulus persimilis and A. californicus attacked not only T. urticae but also E. asiaticus. However, the predators produced very few eggs and their offspring rarely reached adulthood when fed on E. asiaticius, so their potential as control agents for the latent mite appears to be low. In contrast, A. womersleyi feeding on E. asiaticus reproduced as well as when fed on T. urticae, and exterminated both species of spider mite. This suggests that A. womersleyi has greater potential as a biological control agent in crops where both species may occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1021116121604 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Manaaki Whenua - Landcare Research, 231 Morrin Road, Auckland, 1072, New Zealand.
The balance between mating benefits and costs shapes reproductive strategies and life history traits across animal species. For biological control programs, understanding how mating rates influence life history traits is essential for optimising population management and enhancing predator efficacy. This study investigates the impact of mating opportunity availability, delayed mating, and male mating history (copulation frequency) on the lifespan (both sexes), female reproductive traits (duration of oviposition and of pre- and post-oviposition periods, and lifetime oviposition), and offspring quality (egg size and offspring survival) of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), an important biological control agent against spider mites.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sıtkı Koçman University, Mugla, Türkiye.
The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Yangzhou University, Yangzhou, China.
Background: Phaseolus lunatus, commonly known as the lima bean, is a leguminous crop cultivated in various regions worldwide. It is native to tropical America and is extensively grown in both tropical and temperate climates. Lima beans are highly nutritious and versatile, serving not only as a food and vegetable, but also as a source of green manure.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!