Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipids seem to be the major energy store in crustaceans. Moreover, they are extremely important in maintaining structural and physiological integrity of cellular and sub cellular membranes. During salinity adaptation, energy-demanding mechanisms for hemolymph osmotic and ionic regulation are activated. Thus, the main goal of this work was to verify the possible involvement of lipids as an energy source in the osmotic adaptation process. The estuarine crab Chasmagnathus granulata was captured and acclimated to salt water at 20 per thousand salinity and 20 +/- 2 degrees C, for 30 days. After acclimation, crabs were divided into groups of ten and transferred to fresh water (0 per thousand ), salt water at 40 per thousand salinity, or maintained in salt water at 20 per thousand salinity (control group), without feeding. Before and seven days after the salinity change, wet weight and lipid concentration in gills, muscle, hepatopancreas, and hemolymph were determined according to the colorimetric assay of sulphophosphovanilin. Results show that hepatopancreas lipids were not mobilized during osmotic stress regulation. Gill and muscle lipids were significantly lower in crabs subjected to hypo-osmotic stress than those subjected to the hyper-osmotic stress or maintained at the control salinity. Our results point to the occurrence of lipid mobilization and involvement of these compounds in the osmotic acclimation process in C. granulata, but with differences between tissues and the osmotic shock (hypo or hyper) considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.a.10219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!