Spectral signature of cosmological infall of gas around the first quasars.

Nature

School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.

Published: January 2003

Recent observations have shown that, only a billion years after the Big Bang, the Universe was already lit up by bright quasars fuelled by the infall of gas onto supermassive black holes. The masses of these early black holes are inferred from their luminosities to be >10(9) solar masses (M(O)), which is a difficult theoretical challenge to explain. Like nearby quasars, the early objects could have formed in the central cores of massive host galaxies. The formation of these hosts could be explained if, like local large galaxies, they were assembled gravitationally inside massive (> 10(12) M(O)) haloes of dark matter. There has hitherto been no observational evidence for the presence of these massive hosts or their surrounding haloes. Here we show that the cosmic gas surrounding each halo must respond to its strong gravitational pull, where absorption by the infalling hydrogen produces a distinct spectral signature. That signature can be seen in recent data.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01330DOI Listing

Publication Analysis

Top Keywords

spectral signature
8
infall gas
8
black holes
8
signature cosmological
4
cosmological infall
4
gas quasars
4
quasars observations
4
observations billion
4
billion years
4
years big
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!