The prospect of developing 'magic bullets' to attack tumour cells has been a goal of biologists for decades. Abundant experimental and clinical observations demonstrating that an effective specific immune response may engender tumour regression has prompted efforts to find an immunotherapeutic approach to this problem. The most important arm of cellular immunity for such responses appears to be cytotoxic T-lymphocytes (CTL) which can recognise antigen on virtually all cell types and which are key to the elimination of virally-infected cells. The specific activation and maintenance of activity of these cells is therefore the major goal of designing a therapeutic cancer vaccine. Advances in our understanding of the role of dendritic cells (DC) in priming and modifying immune responses suggest that they should be potent adjuvants for vaccination. The use of antigens targeted to the major histocompatibility complex (MHC) molecules expressed on these cells as an approach to tumour immunotherapy has already been tested in the treatment of many malignancies, and recent findings shed light on additional directions through which their efficacy may be improved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14728222.5.4.491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!