Characterization of a novel parainfluenza virus, caviid parainfluenza virus 3, from laboratory guinea pigs (Cavia porcellus).

Comp Med

Research Animal Diagnostic Laboratory, Department of Veterinary Pathobiology, 1600 East Rollins Road, Columbia, Missouri 65211, USA.

Published: December 2002

A novel Respirovirus was isolated from nasopharyngeal swab specimens from clinically normal laboratory guinea pigs, and was characterized and named caviid parainfluenza virus 3 (CavPIV-3). The CavPIV-3 is enveloped, is 100 to 300 nm in diameter, and has a characteristic 15-nm-diameter chevron-shaped virus ribonucleocapsid protein. Sequence analysis of the fusion glycoprotein of CavPIV-3 revealed it to be 94% identical to human and guinea pig parainfluenza 3 (PIV-3) viruses and 80% identical to bovine PIV-3. To determine whether CavPIV-3 causes clinical disease in laboratory guinea pigs and to compare the serologic response of guinea pigs to CavPIV-3 and to other paramyxoviruses, an infection study was performed, in which groups of guinea pigs were inoculated with CavPIV-3, Sendai virus, simian virus 5 (SV-5), murine pneumonia virus (PVM), or bovine PIV-3 virus. During the course of the study, guinea pigs were maintained in an infectious disease suite, housed in Micro-Isolator cages, and were only manipulated under a laminar flow hood. Clinical signs of disease were not observed in any of the paramyxovirus-inoculated guinea pigs during the eight-week course of the study, and histologic signs of disease were not evident at necropsy eight weeks after inoculation. Guinea pigs inoculated with CavPIV-3, Sendai virus, PVM, and bovine PIV-3 developed robust homologous or heterologous serologic responses. In contrast, guinea pigs inoculated with SV-5 developed modest or equivocal serologic responses, as assessed by use of an enzyme-linked immunosorbent assay. Further, use of the SV-5 enzyme-linked immunosorbent assay resulted in the highest degree of non-specific reactivity among all of the paramyxovirus assays. In summary, CavPIV-3 is a novel guinea pig Respirovirus that subclinically infects laboratory guinea pigs, resulting in a robust serologic response, but no observed clinical or histologic disease. The CavPIV-3 fusion glycoprotein gene sequence is available from GenBank as accession No. AF394241, and the CavPIV-3 virus is available from the American Type Culture Collection as accession No. DR-1547.

Download full-text PDF

Source

Publication Analysis

Top Keywords

guinea pigs
40
laboratory guinea
16
parainfluenza virus
12
guinea
12
bovine piv-3
12
pigs inoculated
12
virus
10
pigs
10
cavpiv-3
10
caviid parainfluenza
8

Similar Publications

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (N-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!