Methodology for siting ambient air monitors at the neighborhood scale.

J Air Waste Manag Assoc

Office of Transportation and Air Quality, US Environmental Protection Agency, Ann Arbor, Michigan, USA.

Published: December 2002

AI Article Synopsis

  • To measure compliance with U.S. air quality standards for particulate matter, it's essential to understand how PM concentrations vary in a neighborhood.
  • A methodology was developed that uses middle-scale data (100 to 500 m) to select appropriate monitoring sites.
  • Field tests in Hudson County, NJ, showed the methodology effectively predicted PM10 concentrations, highlighting both its success and factors that limited its accuracy.

Article Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases. The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area's inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2002.10470870DOI Listing

Publication Analysis

Top Keywords

ambient air
8
air monitors
8
siting methodology
8
field study
8
hudson county
8
methodology
5
methodology siting
4
siting ambient
4
monitors neighborhood
4
neighborhood scale
4

Similar Publications

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.

View Article and Find Full Text PDF

Purification and Value-Added Conversion of NO under Ambient Conditions with Photo-/Electrocatalysis Technology.

Environ Sci Technol

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

Background: Atmospheric ozone is a common air pollutant with known impacts on maternal and fetal health. However, the relationship between gestational ozone exposure and susceptibility to respirovirus infection remains unclear. This study aims to assess the association between longitudinal ozone exposure during pregnancy and COVID-19 risk in late gestation.

View Article and Find Full Text PDF

Previous observational studies have reported inconsistent associations between air pollution and autoimmune eye diseases (AEDs). The primary objective of this Mendelian randomization (MR) study was to investigate the causal link of air pollution with AEDs risk. The instrumental variables were selected based on genome-wide association study data.

View Article and Find Full Text PDF

Exploring critical pathways using robust strategies: Nanodiamond electrocatalysts for promoting boron removal via electrosorption.

Water Res

December 2024

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

This study presents the first instance of a crucial route for the efficient removal of boron from effluents using a strategically applied electrosorption technology using nanodiamonds annealed under argon (denoted as A-NDs). We demonstrate a significant enhancement in adsorption capacity for boron removal facilitated by a flow-through electrosorption cell, and outline the results of surface characterization and electrochemical activity tests of the fabricated nanodiamond (ND) anodes (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!