This paper presents a new concept of radiation hazard assessment for spacecraft crew members during long term space missions on the basis of a generalized dosimetric function. This new dosimetric function enables a complicated nature of space radiation exposure to be reduced to the conditions of a standard irradiation. It can be obtained on the basis of mean-tissue equivalent dose values calculated for each space radiation source and transmission coefficients describing the influence of the complex spatial and temporal distribution of the absorbed dose in the cosmonaut's body on the radiobiological effects. The combination of cosmic ionizing radiation with other non-radiation nature factors in flight can also be accounted for. In terms of the generalized dose, it is possible to assess the nature and extent of lowering a crew working capacity, as well as radiation risk, both during a flight and post flight period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0273-1177(02)00167-9DOI Listing

Publication Analysis

Top Keywords

dosimetric function
12
radiation hazard
8
space missions
8
missions basis
8
basis generalized
8
generalized dosimetric
8
space radiation
8
radiation
6
estimation cosmonaut's
4
cosmonaut's radiation
4

Similar Publications

Very High-Energy Electron Therapy Toward Clinical Implementation.

Cancers (Basel)

January 2025

Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.

The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.

View Article and Find Full Text PDF

Optimizing TMS dosimetry: evaluating the effective electric field as a novel metric.

Phys Med Biol

January 2025

Department of Information Engineering, Electronics and Telecommunications (DIET) , University of Rome La Sapienza, Via Eudossiana 18, Rome, 00184, ITALY.

Objective: This study introduces the effective electric field (Eeff) as a novel observable for transcranial magnetic stimulation (TMS) numerical dosimetry. Eeff represents the electric field component aligned with the local orientation of cortical and white matter neuronal elements. To assess the utility of Eeff as a predictive measure for TMS outcomes, we evaluated its correlation with TMS induced muscle responses and compared it against conventional observables, including the electric (E-)field magnitude, and its components normal and tangential to the cortical surface.

View Article and Find Full Text PDF

Objective: As proton arc therapy (PAT) approaches clinical implementation, optimizing treatment plans for this innovative delivery modality remains challenging, especially in addressing arc delivery time. Existing algorithms for minimizing delivery time are either optimal but computationally demanding or fast but at the expense of sacrificing many degrees of freedom. In this study, we introduce a flexible method for pre-selecting energy layers (EL) in PAT treatment planning before the actual robust spot weight optimization.

View Article and Find Full Text PDF

Background: Dedicated breast computed tomography (bCT) systems offer detailed imaging for breast cancer diagnosis and treatment. As new bCT generations are developed, it is important to evaluate their imaging performance and dose efficiency to understand differences over previous models.

Purpose: To characterize the imaging performance and dose efficiency of a second-generation (GEN2) bCT system and compare them to those of a first-generation (GEN1) system.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!