Advances in x-ray crystallographic data collection, structure solution, and refinement/validation have reduced the time required and expanded the range of samples amenable to x-ray crystallographic studies. Consequently, we can now collect complete atomic resolution data sets on physically smaller crystals and solve larger problems by direct methods beyond what could have been accomplished even five years ago. Applying these improved methods to the study of opioid ligands has enhanced our knowledge of the opioid pharmacophore. Despite considerable progress, it is still difficult to define the pharmacophoric parameters required for highly selective and potent opioid peptides. In part this is due to the conformational flexibility remaining even in conformationally constrained peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.10308 | DOI Listing |
J Nat Med
January 2025
Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
A new diterpenoid, carneadiol (1), with an unprecedented tricyclic carbon skeleton, was isolated from the culture extracts of Nocardia carnea IFM 12324. The structure of compound 1 was elucidated using spectral studies, including various NMR data. The absolute configuration of 1 was determined using X-ray crystallographic analysis with the crystalline sponge method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.
X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeWO (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (M) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic M covalent inhibitors characterized by quinoline-based P moieties.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!