Background: Chitosans of high molecular weights have emerged as efficient nonviral gene delivery systems, but the properties and efficiency of well-defined low molecular weight chitosans (<5 kDa) have not been studied. We therefore characterized DNA complexes of such low molecular weight chitosans and related their physical shape and stability to their efficiency as gene delivery systems in vitro and in vivo.

Methods: Individual complexes between six different chitosan oligomers (6-, 8-, 10-, 12-, 14- and 24-mers) and fluorescence-labeled T4 DNA were visualized and classified into six physical shapes using video-enhanced fluorescence microscopy. The effects of chitosan chain length, charge ratio (+/-) and solvent properties (pH and ionic strength) on the stability and structure of the complexes were studied. Gene expression in vitro and in vivo were studied using a luciferase reporter gene.

Results: Free DNA appeared as extended coils. Chitosan complexes had a variety of physical shapes depending on the experimental conditions. In general, the fraction of complexes that had nonaggregated, globular structures increased with increasing chain length of the chitosan oligomer, increasing charge ratio and reduction of pH (from 6.5 to 3.5). A further increase in charge ratio for globular complexes or a further reduction in pH (to 2.5) increased the fraction of aggregates, indicating a window where pharmaceutically desirable globules are obtained. Gene transfection efficiencies in vitro and in vivo were related to the physical shape and stability of the complexes. Only the 24-mer formed stable complexes that gave a high level of gene expression comparable to that of high molecular weight ultrapure chitosan (UPC) in vitro and in vivo.

Conclusions: Chitosan oligomers form complexes with DNA in a structure-dependent manner. We conclude that the 24-mer, which has more desirable physical properties than UPC, is more attractive as a gene delivery system than the conventional high molecular weight chitosans.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.327DOI Listing

Publication Analysis

Top Keywords

gene delivery
8
relationship physical
4
physical shape
4
shape efficiency
4
efficiency oligomeric
4
oligomeric chitosan
4
chitosan gene
4
delivery system
4
system vitro
4
vitro vivo
4

Similar Publications

Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.

View Article and Find Full Text PDF

The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges.

J Control Release

January 2025

Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France. Electronic address:

Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition.

View Article and Find Full Text PDF

Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials.

Biomaterials

January 2025

Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.

View Article and Find Full Text PDF

Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis.

Biomaterials

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:

Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!