Inhibition of nucleoside transport by protein kinase inhibitors.

J Pharmacol Exp Ther

Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

Published: February 2003

Recently we reported that the pyridinylimidazole class of p38 mitogen-activated protein (MAP) kinase inhibitors potently inhibited the facilitated transport of nucleosides and nucleoside analogs in K562 cells. These compounds competed with the binding of nitrobenzylthioinosine (NBMPR) to K562 cells, consistent with inhibition of the NBMPR-sensitive equilibrative transporter (ENT1). In this study we examined a large number of additional protein kinase inhibitors for their effects on nucleoside transport. We find that incubation of K562 cells with tyrosine kinase inhibitors (AG825, AG1517, AG1478, STI-571), protein kinase C (PKC) inhibitors (staurosporine, GF 109203X, R0 31-8220, arcyriarubin A), cyclin-dependent kinase inhibitors (roscovitine, olomoucine, indirubin-3'-monoxime), or rapamycin resulted in a dose-dependent reduction of intracellular uptake of [3H]uridine. In contrast, neither the MAP kinase kinase inhibitors (U0126, PD 98059) nor the phosphatidyl inositol-3 kinase inhibitors (wortmannin, LY 294002) affected this process. Furthermore, both transient uptake and prolonged [3H]thymidine incorporation in K562 cells were inhibited by protein kinase inhibitors, inactive analogs of kinase inhibitors (R0 31-6045, SB202474), and NBMPR, independently of effects on cell proliferation as determined by MTT assay. These studies demonstrate that a wide variety of protein kinase inhibitors affect nucleoside uptake through selective inhibition of nucleoside transporters, independently of kinase inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.044214DOI Listing

Publication Analysis

Top Keywords

kinase inhibitors
40
protein kinase
20
k562 cells
16
kinase
13
inhibitors
11
inhibition nucleoside
8
nucleoside transport
8
map kinase
8
protein
6
inhibition
4

Similar Publications

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods.

View Article and Find Full Text PDF

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

Uncommon atypical mutations account for 10-15% of all epidermal growth factor receptor (EGFR) activating mutations in nonsmall-cell lung cancer (NSCLC). Tumors harboring rare EGFR mutations show highly heterogeneous responses to EGFR tyrosine kinase inhibitors (TKIs). There is insufficient clinical evidence for uncommon types of EGFR mutations, especially those with compound EGFR mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!