Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2.

Pediatr Res

Laboratory of Developmental and Molecular Hepatology and Division of Pediatric Gastroenterology, Liver and Nutrition, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA.

Published: February 2003

Bile formation depends on the active secretion of bile salts and other biliary constituents by specific transporters. Recently two major transporters that contribute to bile formation, the bile salt export pump (Bsep) and multidrug resistance protein-2 (Mrp2), have been cloned. The goal of the present study was to define the expression of Bsep and Mrp2 during rat liver development. mRNA expression as assessed by Northern blot and RT-PCR was higher for Mrp2 (40% of adult) at 21 d fetal age relative to Bsep (<20% of adult). The levels of Mrp2 mRNA increased to approximately 50% of adult at 1 d of life and then rapidly increased to adult levels by 1-3 wk. Nuclear run-on assays for Bsep and Mrp2 showed minimal transcription during fetal life with an increase in transcription in the postnatal period. A different pattern of expression was observed for both Mrp2 and Bsep proteins. During fetal life, there was low expression of Mrp2 and Bsep proteins (<20% of adult) with a gradual increase neonatally reaching adult levels at 4 wk. Thus, we noted a temporal delay between the maximal expression of the mRNA (1-3 wk) and protein (4 wk) for Bsep and Mrp2. These results show that 1) expression (of mRNA and protein) of canalicular transporters is developmentally regulated by both transcriptional and posttranscriptional mechanisms and 2) Mrp2 and Bsep gene expression (mRNA) are differentially regulated.

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.PDR.0000047509.54253.01DOI Listing

Publication Analysis

Top Keywords

rat liver
8
bsep mrp2
8
bile formation
8
differential developmental
4
developmental regulation
4
regulation rat
4
liver canalicular
4
canalicular membrane
4
membrane transporters
4
bsep
4

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

The development of novel long-acting injectables for local anesthetics is necessary to effectively manage the acute postoperative pain. The aim of this study was to prepare an injectable oil-based formulation of ropivacaine (ROP) prodrug (ropivacaine stearoxil, ROP-ST) and to investigate the pharmacokinetics and pharmacodynamics after injectable administration. A novel -acyloxymethyl prodrug of ROP, i.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!