The excitatory neurotransmitter glutamate is involved in the control of most, perhaps all, neuroendocrine systems, yet the sites of glutamatergic neurons and their processes are unknown. Here, we used in situ hybridization and immunohistochemistry for the neuron-specific vesicular glutamate transporter-2 (VGLUT2) to identify the neurons in female rats that synthesize the neurotransmitter glutamate as well as their projections throughout the septum-hypothalamus. The results show that glutamatergic neurons are present in the septum-diagonal band complex and throughout the hypothalamus. The preoptic area and ventromedial and dorsomedial nuclei are particularly rich in glutamatergic neurons, followed by the supraoptic, paraventricular, and arcuate nuclei, whereas the suprachiasmatic nucleus does not express detectable amounts of VGLUT2 mRNA. Immunoreactive neurites are seen in very high densities in all regions analyzed, particularly in the preoptic region, followed by the ventromedial, dorsomedial, and arcuate nuclei as well as the external layer of the median eminence, whereas the mammillary complex does not exhibit VGLUT2 immunoreactivity. Many VGLUT2 immunoreactive fibers also contained synaptophysin, suggesting that the transporter is indeed localized to presynaptic terminals. Together, the results identify glutamatergic cell bodies throughout the septum-hypothalamus in region-specific patterns and show that glutamatergic nerve terminals are present in very large numbers such that most neurons in these brain regions can receive glutamatergic input. We examined the GnRH system as an example of a typical neuroendocrine system and could show that the GnRH perikarya are closely apposed by many VGLUT2-immunoreactive boutons, some of which also contained synaptophysin. The presence of VGLUT2 mRNA-containing cells in specific nuclei of the hypothalamus indicates that many neuroendocrine neurons coexpress glutamate as neurotransmitter, in addition to neuropeptides. These systems include the oxytocin, vasopressin, or CRH neurons as well as many others in the periventricular and mediobasal hypothalamus. The presence of VGLUT2 mRNA in steroid-sensitive regions of the hypothalamus, such as the anteroventral periventricular, paraventricular, or ventromedial nuclei indicates that gonadal and adrenal steroid can directly alter the functions of these glutamatergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2002-220908 | DOI Listing |
Alzheimers Dement
January 2025
Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.
Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).
Mol Psychiatry
January 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target.
View Article and Find Full Text PDFPLoS Biol
January 2025
Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China.
The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.
View Article and Find Full Text PDFbioRxiv
January 2025
Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!