Background: The emergence of Mycobacterium tuberculosis strains resistant to antituberculosis agents has recently received increased attention owing largely to the dramatic outbreaks of multi drug resistance tuberculosis (MDR-TB).
Methods: Patients residing in Zonguldak and Kayseri provinces of Turkey with, pulmonary tuberculosis diagnosed between 1972 and 1999 were retrospectively identified. Drug susceptibility tests had been performed for isoniazid (INH), rifampin (RIF), streptomycin (SM), ethambutol (EMB) and thiacetasone (TH) after isolation by using the resistance proportion method.
Results: Total 3718 patients were retrospectively studied. In 1972-1981, resistance rates for to SM and INH were found to be 14.8% and 9.8% respectively (n: 2172). In 1982-1991 period, resistance rates for INH, SM, RIF, EMB and TH were 14.2%, 14.4%, 10.5%, 2.7% and 2.9% (n: 683), while in 1992-1999 period 14.4%, 21.1%, 10.6%, 2.4% and 3.7% respectively (n: 863). Resistance rates were highest for SM and INH in three periods. MDR-TB patients constituted 7.3% and 6.6% of 1982-1991 and 1992-1999 periods (p > 0.05).
Conclusion: This study demonstrates the importance of resistance rates for TB. Continued surveillance and immediate therapeutic decisions should be undertaken in order to prevent the dissemination of such resistant strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149381 | PMC |
http://dx.doi.org/10.1186/1476-0711-1-6 | DOI Listing |
Sci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.
View Article and Find Full Text PDFFront Immunol
December 2024
Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Introduction: The incidence and prevalence of infections with non-tuberculous mycobacteria such as (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China.
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity.
View Article and Find Full Text PDFParasit Vectors
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Morogoro, Tanzania.
Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Urology, Xinjiang Medical University Affiliated Cancer Hospital, Urumqi, China.
Background: Immune checkpoint inhibitors (ICIs) are a cornerstone therapy for advanced renal cell carcinoma (RCC). However, significant rates of primary resistance hinder their efficacy, and the underlying mechanisms remain poorly understood. This study aims to unravel the tumor-immune interactions and signaling pathways driving primary resistance to ICIs in RCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!