Photoejection of one CO ligand from isolated CpM(CO)n+1BR2 (n = 1: M = Fe, Ru; n = 2: M = Mo,W; R2 = catecholate or pinacolate) compounds produces a coordinatively unsaturated 16 e- intermediate, a cyclic dioxaboryl transition metal complex, that can efficiently and selectively initiate regioselective C-H bond activation and can be used in the functionalization of alkanes. This chemistry appears distinct from that reported previously for related CpM(CO)n complexes of alkyl and aryl ligands. We show here by a combination of experimental and theoretical studies that the "unoccupied" p orbital of dioxaboryl ligands are intimately involved in the C-H bond activation step and that this hydrogen transfer to boron occurs by a boron-assisted, metal-mediated sigma-bond metathesis. The "unoccupied" p orbital of boron lowers the energy of the transition state and the intermediates by accepting electron density from the metal. The metal-bound borane then rotates, transfers back through a sigma-bond metathesis to capture the alkyl, and leaves the metal hydride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja028394c | DOI Listing |
Inorg Chem
January 2025
Institute of Chemistry, Université de Strasbourg, CNRS, Strasbourg 67000, France.
The present study details the synthesis and characterization of a robust, monomeric Al-H aluminate supported by a tridentate -phenolate ligand, isolated as [][Li(THF)] and [][N(Bu)] salts, which were then exploited as CO hydroboration catalysts. As initial reactivity studies, it was observed that the nucleophilic Al-H anion in [][C] (C = countercation [Li(THF)] or [N(Bu)]) reacts fast with CO, to afford the corresponding Al-formate complexes [][C], which were isolated and structurally characterized. Such anions were then exploited as potential CO reduction catalysts.
View Article and Find Full Text PDFChemistry
January 2025
Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.
View Article and Find Full Text PDFChemistry
December 2024
Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Institute for Sustainable and Circular Chemistry, Universitetisweg 99, 3584 CG, Utrecht, The, Netherlands.
Nickelacyclobutanes are reactive intermediates in catalytic cycles including cyclopropanation and insertion reactions. The stoichiometric study of these intermediates has shown that their reactivity is highly influenced by the coordination environment of the nickel center. A pentacoordinated nickelacyclobutane embedded in a diphosphine pincer ligand has been shown to selectively undergo various reactions with exogenous ligands, including [2+2] cycloreversion and carbene transfer to an isocyanide.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, CMS College Kottayam (Autonomous) Mahatma Gandhi University, Kottayam, Kerala, 686001, India.
A detailed theoretical study delving into the molecular mechanisms of the Ullmann-type -arylation reactions catalyzed by manganese and zinc metal ions has been investigated with the aid of the density functional theory (DFT) method. In contrast to the redox-active mechanisms proposed for classical Ullmann-type condensation reaction, a redox-neutral mechanism involving σ-bond metathesis emerged as the most appealing pathway for the investigated high-valent Mn(II) and Zn(II)-catalyzed -arylation reactions. The mechanism remains invariant with respect to the nature of the central metal, ligand, base, This unusuality in the mechanism has been dissected by considering three cases: ligand-free and ligand-assisted Mn(II)-catalyzed -arylation reaction and ligand-assisted Zn(II)-catalyzed -arylation reactions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal-731235, India.
First-principles analyses were performed for understanding the mechanistic details of Fe-catalysed asymmetric hydrogenation of alkenes in the presence of silane that has recently been experimentally realized. The catalytic hydrogenation is expected to proceed through initial hydride transfer from Fe-H to the CC bond of alkene, followed by σ-bond metathesis of hydrosilane to afford a chiral alkane product and an iron silyl species, which then reacts with H to regenerate the iron hydride species another σ-bond metathesis. The mechanistic details and the origin of the regioselectivity and stereoselectivity of these reactions are understood on the basis of detailed potential energy surface analysis, charge transfer and noncovalent interactions involved therein, strain energy and isodesmic studies in the solvated stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!