An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (< 5 ppb). The LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b207660h | DOI Listing |
ACS Nano
December 2024
Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.
View Article and Find Full Text PDFBiotechnol J
December 2024
Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Microelectronics, Shanghai University, Shanghai 200444, China.
GaN-based micro-light-emitting diodes (Micro-LEDs) are regarded as promising light sources for near-eye-display applications such as augmented reality/virtual reality (AR/VR) displays due to their high resolution, high brightness, and low power consumption. However, the application of Micro-LEDs in high-pixel-per-inch (PPI) displays is constrained by the drop in efficiency caused by sidewall defects in small-sized devices. In this study, a process method involving NH plasma pretreatment to reduce sidewall defects is proposed and investigated for enhancing the external quantum efficiency (EQE) of small-sized devices.
View Article and Find Full Text PDFNano Lett
December 2024
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Despite the rapid progress in perovskite light-emitting diodes (PeLEDs), achieving high stability remains an outstanding challenge. PeLEDs produce heat during operation, raising the temperatures, which accelerate device degradation. To determine the PeLED temperatures, a very limited number of techniques represented by infrared thermal imaging (ITI) are employed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!