The characterization of biomolecular secondary structures by surface plasmon resonance.

Analyst

School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK NR4 7TJ.

Published: December 2002

Recently there has been considerable interest in using surface plasmon resonance (SPR) for the measurement of conformational changes of immobilized biomolecules that are induced by an exogenous analyte. While a number of studies have shown the analytical utility of such measurements, there has been no report which characterizes the specific secondary structure that actuates the change in SPR signal. The use of SPR to indicate the type of secondary structure present in two immobilized polypeptides, poly-L-lysine (PL) and poly-L-glutamic acid (PGA), and a globular protein, concanavalin A (Con A) is described in this report. The PL, PGA and Con A were modified with N-succinimidyl 3-(2-pyridyldithiol) propionate (SPDP) to introduce disulfide groups to facilitate the attachment onto gold-coated surfaces via self-assembly. Ethanol and 2,2,2-trifluoroethanol (TFE) were used to induce changes in the secondary structure of the immobilized polypeptides and the protein respectively. Using both circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies, it has been demonstrated that it is possible to correlate the signal changes observed in SPR to the secondary conformation of the biomolecule. Both CD and FTIR showed that a decrease in SPR signal corresponded to a high content of beta, turn or unordered structures while an increase corresponded to a high alpha-helical content. The sensitivity of the SPR technique is comparable to that obtained in solution with CD and FTIR spectroscopies. These results are the first demonstration that SPR can be used to characterize secondary structures. There is potential, therefore, for SPR to be used as a technique to study secondary conformational changes of immobilized polypeptides and proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b208487bDOI Listing

Publication Analysis

Top Keywords

secondary structure
12
immobilized polypeptides
12
secondary structures
8
surface plasmon
8
plasmon resonance
8
spr
8
conformational changes
8
changes immobilized
8
spr signal
8
structure immobilized
8

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline.

Sci Total Environ

January 2025

Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:

Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.

View Article and Find Full Text PDF

A mechanistic insight into whey protein isolate (WPI) fibrillation driven by divalent cations.

Food Chem

January 2025

Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:

Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.

View Article and Find Full Text PDF

Subcritical water hydrolysis of eggshell membrane and its physicochemical characteristics.

Food Chem

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, PR China. Electronic address:

The insolubility of eggshell membrane (ESM) limits it application. This study utilized a green process subcritical water (SW), to prepare soluble ESM and compared it with acid hydrolysis. The effect of SW temperature on the yields of total protein, free amino acids, and glycosaminoglycan in the hydrolysate was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!