Mutations in the human cellular retinaldehyde binding protein (CRALBP) gene cause retinal pathology. To understand the molecular basis of impaired CRALBP function, we have characterized human recombinant CRALBP containing the disease causing mutations R233W or M225K. Protein structures were verified by amino acid analysis and mass spectrometry, retinoid binding properties were evaluated by UV-visible and fluorescence spectroscopy and substrate carrier functions were assayed for recombinant 11-cis-retinol dehydrogenase (rRDH5). The M225K mutant was less soluble than the R233W mutant and lacked retinoid binding capability and substrate carrier function. In contrast, the R233W mutant exhibited solubility comparable to wild type rCRALBP and bound stoichiometric amounts of 11-cis- and 9-cis-retinal with at least 2-fold higher affinity than wild type rCRALBP. Holo-R233W significantly decreased the apparent affinity of rRDH5 for 11-cis-retinoid relative to wild type rCRALBP. Analyses by heteronuclear single quantum correlation NMR demonstrated that the R233W protein exhibits a different conformation than wild type rCRALBP, including a different retinoid-binding pocket conformation. The R233W mutant also undergoes less extensive structural changes upon photoisomerization of bound ligand, suggesting a more constrained structure than that of the wild type protein. Overall, the results show that the M225K mutation abolishes and the R233W mutation tightens retinoid binding and both impair CRALBP function in the visual cycle as an 11-cis-retinol acceptor and as a substrate carrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207300200 | DOI Listing |
Planta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFVet Res
January 2025
College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea.
Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!