The intensive stromal reaction is one of characteristics of pancreatic exocrine carcinoma. The mutual interaction between pancreatic cancer cells and orthotopic tumor-derived fibroblasts have not been clarified yet. In this study, we sought to elucidate the mechanism underlying the tumor-stromal interaction with an in vitro coculture experimental system. Considerable strong c-Met expression was detected in seven out ten lines of human pancreatic carcinoma cells, as determined by Western blotting. For hepatocyte growth factor (HGF)-production, however, none or only trace amounts of HGF could be detected in those ten cell lines. Of the two lots of tumor-derived fibroblasts obtained from two pancreatic cancer patients, the fibroblasts capable to produce HGF could initiate an apparent invasion-stimulating response in strong c-Met-expressed Suit-2 and Panc-1 cells but not in faint expressed Mia PaCa-2 and BxPC-3 cells. A specialized HGF antagonist, NK4 would effectively inhibit the fibroblast-mediated invasive growth, thus proving the key role of the paracrine-fashioned HGF/c-Met pathway in the tumor-stromal interaction. On the other hand, the regulative action of cancer cells on HGF expression of fibroblasts was also investigated using direct or indirect coculture systems. For the fibroblasts that originally did not produce HGF, cancer cells failed to show any HGF-inductive effect. For the HGF-producing fibroblasts, despite of somewhat upregulation or downregulation in fibroblast HGF expression, the feedback regulation by studied pancreatic cancer cells in both coculture modes were relatively limited. This in vitro study sketched out the interaction between cancerous and stromal compartments with an emphasis on HGF/c-Met signal pathway, thus possibly helping to unveil the more complicated mutual modulation in vivo between pancreatic cancer and host mesenchymal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3835(02)00517-7DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
pancreatic cancer
20
tumor-derived fibroblasts
12
cells
9
fibroblasts
9
cancer
8
cells orthotopic
8
orthotopic tumor-derived
8
hgf
8
tumor-stromal interaction
8

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Advancing cancer therapy with custom-built alternating electric field devices.

Bioelectron Med

January 2025

School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!