Biochemical identification of proteasome-associated endonuclease activity in sunflower.

Biochim Biophys Acta

UMR 1095, INRA Amélioration et Santé des Plantes, Université Blaise Pascal, Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France.

Published: January 2003

Proteasomes have been purified from sunflower hypocotyles. They elute with a molecular mass of 600 kDa from gel filtration columns and two-dimensional gel electrophoresis indicates that the complex contains at least 20 different protein subunits. Peptide microsequencing revealed the presence of four subunits homologous to subunits Beta2, Beta6, Alpha5 and Alpha6 of plant proteasomes. These proteasomes have chymotrypsin-like activity and the highly purified fraction of this complex is associated with an endonuclease activity hydrolyzing Tobacco mosaic virus RNA and Lettuce mosaic virus RNA with a cleavage pattern showing fragments of well-defined size. This is the first evidence of a RNA endonuclease activity associated with plant proteasomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1570-9639(02)00500-9DOI Listing

Publication Analysis

Top Keywords

endonuclease activity
12
plant proteasomes
8
mosaic virus
8
virus rna
8
biochemical identification
4
identification proteasome-associated
4
proteasome-associated endonuclease
4
activity
4
activity sunflower
4
proteasomes
4

Similar Publications

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling.

View Article and Find Full Text PDF

The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.

View Article and Find Full Text PDF

RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation.

View Article and Find Full Text PDF

Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System.

BioTech (Basel)

December 2024

The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.

Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!