Results are presented on a complex study of field electron emission (FEE) and structural correlations for nanocrystalline diamond and nitride films. It was found that all the samples studied showed similar dependences of the Fowler-Nordheim work function and effective emitting area on the threshold emission field. Besides it was generally observed that FEE occurred at nanosized regions on the boundary of high and low conducting areas, and peaks of the emission intensity were associated with a lowered surface electron potential. Based on the experimental data, the following mechanism of low-FEE from the materials studied can be supposed. Electrons are transferred from the conducting channel into a vacuum through the low-dimensional region where the emission probability is high due to the quantum well effect. A physical model of the electron escape from a quantum well was analyzed. As follows from the estimations, the quantum size effect, being combined with a moderate field enhancement (the field enhancement factor beta=10-100), allows us to explain the observed variation in the energetic parameters for the samples studied. The function of the insulating grains is mainly to support the conducting channels in the sample body. Also, the grains can fulfill an additional function of the heat sink.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3991(02)00303-0 | DOI Listing |
RSC Adv
January 2025
Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.
The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh
Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFNano Lett
January 2025
Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as WSe, are promising candidates for next-generation integrated circuits. However, the dependence of intrinsic properties of TMD devices on various processing steps remains largely unexplored. Here, using pristine p-type WSe devices as references, we comprehensively studied the influence of each step in traditional nanofabrication methods on device performance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!