Oxytocin and vasopressin reduce the amplitude of excitatory postsynaptic responses in magnocellular neuroendocrine cells of the supraoptic nucleus (SON). To test whether synaptic glutamate release is modulated by these neuropeptides, we examined the combined effect of vasopressin and oxytocin on depolarization-induced glutamate and aspartate release from acutely dissected rat SON or fronto-parietal cortex punches. Glutamate release was stimulated with 60 mm K+ for 5-10 min and measured using ion exchange chromatography or high-performance liquid chromatography. During depolarization with high K+, extracellular glutamate levels increased, on average, to 204% of control values. In the presence of vasopressin/oxytocin, K+-stimulated glutamate and aspartate release were significantly reduced by 34% and 62%, respectively, in the SON. Treatment with the aminopeptidase inhibitor amastatin did not mimic the effects of exogenous vasopressin/oxytocin on glutamate or aspartate release, suggesting that, under the conditions tested here, amastatin treatment may produce more complex effects. The effects of exogenous neuropeptides are likely mediated by oxytocin and/or vasopressin receptors, as the oxytocin- and V1a-receptor antagonist, Manning Compound (10-100 micro m), partially reversed the effects of vasopressin/oxytocin on SON glutamate release. In contrast, in cortical punches, glutamate release was enhanced by high K+, but vasopressin/oxytocin did not significantly reduce glutamate/aspartate release, consistent with the relatively sparse distribution of vasopressin/oxytocin receptors in fronto-parietal cortex. These findings suggest that locally released oxytocin and vasopressin may autoregulate SON magnocellular neuroendocrine cell activity in part by modulating the release of excitatory amino acids from afferent terminals targeting these cells and/or from other cellular sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2826.2003.00976.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!