Motility modes of Spiroplasma melliferum BC3: a helical, wall-less bacterium driven by a linear motor.

Mol Microbiol

Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel.

Published: February 2003

Spiroplasma are members of the Mollicutes (Mycoplasma, Acholeplasma and Spiroplasma) - the simplest, minimal, free-living and self-replicating forms of life. The mollicutes are unique among bacteria in completely lacking cell walls and flagella and in having an internal, contractile cytoskeleton, which also functions as a linear motor. Spiroplasma are helical, chemotactic and viscotactic active swimmers. The Spiroplasmal cytoskeleton is a flat ribbon composed of seven pairs of fibrils. The ribbon is attached to the inner side of the cell membrane along its innermost (shortest) helical line. The cell's geometry and dynamic helical parameters, and consequently motility, can be controlled by changing differentially and in a co-ordinated manner, the length of the fibrils. We identified several consistent modes of cell movements and motility originating, most likely, as a result of co-operative or local molecular switching of fibrils: (i). regular extension and contraction within the limits of helical symmetry (this mode also includes straightening, beyond what is allowed by helical symmetry, and reversible change of helical sense); (ii). spontaneous and random change of helical sense originating at random sites along the cell (these changes propagate along the cell in either direction and hand switching is completed within approximately 0.08 second); (iii). forming a deformation on one of the helical turns and propagating it along the cell (these helical deformations may travel along the cell at a speed of up to approximately 40 microm s-1); (iv). random bending, flexing and twitching (equivalent to tumbling). In standard medium (viscosity = 1.147 centipoise) the cells run at approximately 1.5 microm s-1, have a Reynolds number of approximately 3.5 x 10-6 and consume approximately 30 ATP molecules s-1. Running velocity, duration, persistence and efficiency increase with viscosity upon adding ficoll, dextran and methylcellulose to standard media. Relative force measurements using optical tweezers confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2003.03200.xDOI Listing

Publication Analysis

Top Keywords

helical
10
linear motor
8
motor spiroplasma
8
helical symmetry
8
change helical
8
helical sense
8
microm s-1
8
cell
7
motility modes
4
spiroplasma
4

Similar Publications

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Constructing conical helices inside carbon nanocones.

Phys Chem Chem Phys

January 2025

School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.

Molecular dynamics simulations demonstrate that regular conical helices of poly(-phenylene) (PPP) chains can be constructed inside the confined space of single-walled carbon nanocones (CNCs). The translocation displacement of the PPP chain combined with the change of the system total potential energy including each energy component and structural parameters of the formed conical helix is discussed to deeply explore the microstructure evolution, driving forces and dynamic mechanisms. In addition, the influence of chain length, cone angle, temperature, chain number, linked position of benzene rings and the form of Lennard-Jones potential on the helical encapsulation is further studied.

View Article and Find Full Text PDF

Transforming an ATP-dependent enzyme into a dissipative, self-assembling system.

Nat Chem Biol

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!