Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat.

Eur J Neurosci

Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, 43201-Reus, Spain.

Published: January 2003

We studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release and their relationship with voltage-dependent calcium channels in the neuromuscular synapses of the Levator auris longus muscle from adult (30-40 days) and newborn (3-6 and 15 days postnatal) rats. Using intracellular recording, we studied how several muscarinic antagonists affected the evoked endplate potentials. In some experiments we previously incubated the muscle with calcium channel blockers (nitrendipine, omega-conotoxin-GVIA and omega-Agatoxin-IVA) before determining the muscarinic response. In the adult, the M1 receptor-selective antagonist pirenzepine (10 micro m) reduced evoked neurotransmission ( approximately 47%). The M2 receptor-selective antagonist methoctramine (1 micro m) increased the evoked release ( approximately 67%). Both M1- and M2-mediated mechanisms depend on calcium influx via P/Q-type synaptic channels. We found nothing to indicate the presence of M3 (4-DAMP-sensitive) or M4 (tropicamide-sensitive) receptors in the muscles of adult or newborn rats. In the 3-6-day newborn rats, pirenzepine reduced the evoked release ( approximately 30%) by a mechanism independent of L-, N- and P/Q-type calcium channels, and the M2 antagonist methoctramine (1 micro m) unexpectedly decreased the evoked release ( approximately 40%). This methoctramine effect was a P/Q-type calcium-channel-dependent mechanism. However, upon maturation in the first two postnatal weeks, the M2 pathway shifted to perform the calcium-dependent release-inhibitory activity found in the adult. We show that the way in which M1 and M2 muscarinic receptors modulate neurotransmission can differ between the developing and adult rat neuromuscular synapse.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2003.02428.xDOI Listing

Publication Analysis

Top Keywords

evoked release
12
ach release
8
presynaptic muscarinic
8
adult rat
8
calcium channels
8
receptor-selective antagonist
8
reduced evoked
8
antagonist methoctramine
8
methoctramine micro
8
newborn rats
8

Similar Publications

The role of cancer cell-released extracellular vesicles: have we become closer to cancer pain treatment?

Extracell Vesicles Circ Nucl Acids

December 2024

Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.

The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.

View Article and Find Full Text PDF

Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.

Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!