The penis is unique in that it undergoes morphogenesis and differentiation primarily in the postnatal period. For complex structures such as the penis to be made from undifferentiated precursor cells, proliferation, differentiation, and patterning are required. This process involves coordinated activity of multiple signals. Sonic hedgehog (Shh) forms part of a regulatory cascade that is essential for growth and morphogenesis of many tissues. It is hypothesized that the penis utilizes regulatory mechanisms similar to those of the limb and accessory sex organs to pattern penile postnatal morphogenesis and differentiation and that the Shh cascade is critical to this process. To test this hypothesis, Shh, BMP-4, Ptc, and Hoxa-10 localization and function were examined in Sprague-Dawley rat penes by means of quantitative reverse transcription polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting. These genes were expressed in the penis during postnatal morphogenesis in a spatially and temporally restricted manner in adjacent layers of the corpora cavernosal sinusoids. The function of Shh and BMP-4 is to establish and maintain corpora cavernosal sinusoids. The data suggest that Ptc and Hoxa-10 are also important in penile morphogenesis. The continuing function of Shh and targets of its signaling in maintaining penile homeostasis in the adult is significant because disruption of Shh signaling affects erectile function. This is the first report that demonstrates the significant role that Shh plays in establishing and maintaining penile homeostasis and how this relates to erectile function. These studies provide valuable insight that may be applied to improve treatment options for erectile dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.102.006643 | DOI Listing |
Georgian Med News
November 2024
Lab. Neurobiology of Sleep-Wakefulness Cycle, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.
Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.
Sci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFPediatr Int
January 2025
Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: Early onset hypocalcemia, occurring within 3 days of birth, is prevalent among preterm infants. A central line is required to deliver calcium (Ca). The prediction of hypocalcemia is therefore clinically important when the requirement for initial intravascular calcium administration is anticipated.
View Article and Find Full Text PDFBMC Med
January 2025
PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway.
Background: Maternal stress during pregnancy may impact offspring development via changes in the intrauterine environment. However, genetic and environmental factors shared between mothers and children might skew our understanding of this pathway. This study assesses whether prenatal maternal stress has causal links to offspring outcomes: birthweight, gestational age, or emotional and behavioral difficulties, triangulating across methods that account for various measured and unmeasured confounders.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
College of Agriculture, Ibaraki University, Inashiki, Japan.
Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!