AI Article Synopsis

  • The proteasome is a crucial protein complex that facilitates the breakdown of proteins in eukaryotic cells, playing a role in natural killer (NK) cell activity.
  • Selective proteasome inhibitors, specifically MG115 and MG132, significantly reduced both the chymotrypsin-like activity of the proteasome in NK cells and the viability of these cells, promoting apoptosis.
  • The increase in apoptotic cell markers and the upregulation of Fas protein suggest that the apoptosis induced by these inhibitors may be linked to the Fas-mediated death pathway, indicating a complex relationship between proteasome activity and NK cell functionality.

Article Abstract

The proteasome is a multi-subunit protease complex that is involved in intracellular protein degradation in eukaryotes. Previously, we have reported that selective, synthetic chymotryptic proteasome inhibitors inhibit A-NK cell-mediated cytotoxicity by approximately 50%; however, the exact role of the proteasome in NK cell-mediated cytotoxicity remains unknown. Herein, we report that proteasome inhibitors, MG115 and MG132, decreased the proteasome chymotrypsin-like activity in the rat natural killer cell line RNK16 by 85% at a concentration of 5 microM. The viability of RNK16 cells was also reduced in the presence of these inhibitors. Both inhibitors induced the apoptosis of RNK16 cells, as shown by DNA fragmentation, caspase-3 activation and the appearance of sub-G-cell populations. An increase in the fraction of apoptotic cells was observed in a dose- and time-dependent manner in our studies. In addition, the activity of caspase-1, -2, -6, -7, -8, and -9, was increased following the treatment of RNK16 cells with these inhibitors. Further investigation revealed that the expression of Fas (CD95) protein on the RNK16 cell surface was increased after the treatment by MG115 or MG132, indicating that apoptosis induced by proteasome inhibitors in RNK16 cells might be mediated through the Fas (CD95)-mediated death pathway as well. Our studies indicate, for the first time, that proteasomal chymotryptic inhibitors can reduce natural killer cell viability and therefore indirectly inhibit cell-mediated cytotoxicity via the apoptosis-inducing properties of these agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.10296DOI Listing

Publication Analysis

Top Keywords

rnk16 cells
16
natural killer
12
proteasome inhibitors
12
cell-mediated cytotoxicity
12
cell surface
8
fas cd95
8
rat natural
8
mg115 mg132
8
killer cell
8
increased treatment
8

Similar Publications

Large granular lymphocyte (LGL) leukemia arises spontaneously in elderly Fischer (F344) rats. This rodent model has been shown to emulate many aspects of the natural killer (NK) variant of human LGL leukemia. Previous transplantation of leukemic material into young F344 rats resulted in several strains of rat NK (RNK) primary leukemic cells.

View Article and Find Full Text PDF

Natural killer cells are able to recognize and kill target cells according to differences in MHC class I expression. In rodents, the Ly49 receptors are primarily responsible for this MHC differentiation. We previously described the cloning of a novel C-type lectin-like receptor, KLRH1, encoded in the NK complex adjacent to the Ly49 genes and expressed by subsets of NK and NKT cells.

View Article and Find Full Text PDF

In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA.

View Article and Find Full Text PDF

In an earlier report, we demonstrated the superior anticancer efficacy of orally administered squalenoyl gemcitabine (SQdFdC) nanomedicine over its parent drug gemcitabine on rats bearing RNK-16 large granular lymphocytic (LGL) leukemia. In the present communication, we investigated the mechanisms behind this observation both at the cell and tissue level. The mechanisms were investigated by performing cytotoxicity, cell uptake, and biodistribution experiments.

View Article and Find Full Text PDF

NKp30 is a functional activation receptor on a subset of rat natural killer cells.

Eur J Immunol

August 2006

Department of Surgery, Division of Transplantation and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305-5492, USA.

NKp30 is a stimulatory receptor on human NK cells implicated in tumor immunity, and is capable of promoting or terminating dendritic cell maturation. To gain a better understanding of NKp30 biology, we have investigated the expression and function of rat NKp30 (rNKp30). We generated stable transfectants of rNKp30 in RNK16 cells, a rat NK lymphoma line, and used a novel panel of mAb against rNKp30 to study this receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!