Combinatorial binding studies revealed that the di(trans-4-aminoproline)diketopiperazine is an ideal template for two-armed receptors with highly selective binding properties towards peptides. It is not only superior to structurally very different diamines but also to the diastereomeric di(cis-4-aminoproline)diketopiperazine. These empiric results are rationalized by the analysis of the conformation of the diastereomeric diketopiperazines in the solid state, by X-ray crystal structure analysis, as well as by NMR studies in solution: to observe highly selective binding, the template needs to be not only conformationally rigid but it must have a specific turn geometry. The combination of combinatorial binding studies, X-ray crystal structure analysis, and NMR spectroscopy gave insight into why the trans,trans-diketopiperazine is a superior template compared to other diamines. Additionally, the results provide a guide for the rational design of two-armed receptors with good binding properties towards peptidic guests.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200390046DOI Listing

Publication Analysis

Top Keywords

binding properties
12
two-armed receptors
12
combinatorial binding
8
binding studies
8
highly selective
8
selective binding
8
x-ray crystal
8
crystal structure
8
structure analysis
8
binding
6

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!