Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, gamma-ray and electron beams.

Chemosphere

Central Research Institute, Naka Research Center, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102, Japan.

Published: March 2003

Aqueous phenol solutions containing TiO(2) nanoparticles were irradiated with ultraviolet (UV), gamma-ray and electron beams. Organic compounds were fully removed by each type of radiation in the presence of the particles. The absorbed energy of the ionizing radiation (gamma-ray and electron beams) needed for removal was much lower than that of UV photocatalysis. Phenol was decomposed by the ionizing radiation in the absence of the nanoparticles and the addition of TiO(2) had no significant effect on phenol decomposition rate. Instead, total organic carbon (TOC) removal using the ionizing radiation was accelerated drastically by TiO(2). It is suggested that TiO(2) particles affect the intermediate compounds produced through the decomposition of phenol. The amount of removed TOC per absorbed energy were compared in the absence and the presence of TiO(2) nanoparticles. Radiolysis with the nanoparticles showed consistently high rate and high efficiency of TOC removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0045-6535(02)00642-2DOI Listing

Publication Analysis

Top Keywords

toc removal
12
gamma-ray electron
12
electron beams
12
ionizing radiation
12
aqueous phenol
8
phenol solutions
8
solutions tio2
8
tio2 nanoparticles
8
absorbed energy
8
phenol
6

Similar Publications

An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.

View Article and Find Full Text PDF

With the rapid development of electroless nickel (Ni) plating industry, a large amount of Ni complex wastewater is inevitably produced, which is a serious threat to the ecological environment. Herein, a novel Mn-N codoped active carbon (Mn-N@AC) catalyst with high catalytic ozonation ability was synthesized by the impregnation precipitation method and was characterized by BET, XRD, Raman, SEM, FTIR, and TPR. Meanwhile, Mn-N@AC showed excellent catalytic ozonation ability, stability, and applicability.

View Article and Find Full Text PDF

Enhanced leachate concentrate degradation across variable pH ranges using Cu@ATP-CTS Fenton-like catalysts for H₂O₂ activation.

Environ Res

December 2024

College of Environmental Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.

Landfill leachate nanofiltration concentrates (LLNC) contain complex organic pollutants that are difficult to treat. This study developed a copper-doped attapulgite-chitosan composite catalyst (Cu@ATP-CTS) for efficient LLNC degradation in a Fenton-like system. The incorporation of attapulgite extended the effective pH range of Fenton reactions from 2 to 8, overcoming traditional limitations.

View Article and Find Full Text PDF

The photocatalytic efficiency of TiO has been opposed by the fast recombination speed of photogenerated carriers. Here, g-CN -modified sulfate-built-in TiO quantum dots (ST-QDs) were successfully created using a simple ultrasonication-thermal procedure. g-CN-enrapped ST QDs with a 10 nm size were revealed by the characterization results.

View Article and Find Full Text PDF

Enhanced TOC removal from paper mill wastewater using air dielectric barrier discharge plasma with persulfate sources: Mechanistic insights and continuous flow operation performance evaluation.

J Hazard Mater

December 2024

Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea. Electronic address:

This study investigates the removal of total organic carbon (TOC) from paper mill wastewater using air dielectric barrier discharge (DBD) plasma, combined with various persulfate sources, namely potassium peroxymonosulfate (PMS), potassium peroxydisulfate (PDS), and sodium persulfate (SPS). Mechanistic insights into the activation of plasma-PDS and -PMS were obtained through quenching experiments and electron spin resonance (ESR) techniques. The addition of persulfate to air DBD plasma increased TOC removal kinetics by approximately 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!