Induction of immune responses by DNA vaccines in large animals.

Vaccine

Veterinary Infectious Disease Organization, 120 Veterinary Road, SK, Saskatoon, Canada S7N 5E3.

Published: January 2003

AI Article Synopsis

Article Abstract

It is generally recognized that DNA vaccines are often less effective in large animals than in mice. One possible reason for this reduced effectiveness may be transfection deficiency and the low level of expression elicited by plasmid vectors in large animals. In our attempt to enhance transfection efficiency and, thereby, enhance immune responses, we employed a variety of methods inducing gene gun delivery or suppositories as delivery vehicles to mucosal surfaces, as well as electroporation for systemic immunization. To test these different systems, we used two different antigens-a membrane antigen from bovine herpesvirus glycoprotein (BHV-1) gD and a particulate antigen from hepatitis virus B. Gene gun and suppository delivery of BHV-1 gD to the vagina resulted in the induction of mucosal immunity not only in the vagina, but also at other mucosal surfaces. These data support the contention of a common mucosal immune system. In the case of electroporation, we were able to develop significant enhancement of gene expression following electroporation with surface electrodes (non-invasive electroporation) as well as invasive electroporation using single or six-needle electrodes. Various delivery systems such as bioject or needle delivery also influenced the immune response in both the presence and absence of electroporation. These studies also demonstrated that co-administration of plasmids coding for two different antigens (BHV-1 gD and hepatitis B surface antigen (HbsAg)) did not result in significant interference between the plasmids. These studies suggest that various combinations of delivery systems can enhance immunity to DNA-based vaccines and make them practical for administration of these vaccines in large animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(02)00574-1DOI Listing

Publication Analysis

Top Keywords

large animals
16
immune responses
8
dna vaccines
8
vaccines large
8
gene gun
8
mucosal surfaces
8
delivery systems
8
delivery
6
electroporation
6
induction immune
4

Similar Publications

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales.

View Article and Find Full Text PDF

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!