Nonporous particles of microsize were prepared by the dispersion polymerization of styrene and glycidyl methacrylate and chemically modified to introduce amino groups on the surface by grafting with either hexamethylenediamine or N-methyl-1,3-propanediamine. Aminated particles were then coupled with phosphorylated single-stranded polynucleotides at the 5'-end through covalent linkages. The affinity columns packed with these prepared polynucleotide-immobilized particles effectively retained single-stranded DNA, which could base-pair with the immobilized sequence. Bound DNAs could be eluted to yield a sharp peak by using an aqueous solution of 0.4M NaOH. The nonspecific adsorption due to the electrostatic interaction between the polynucleotide and the residual amino groups on the particle surface via the amination with hexamethylenediamine was significant and could only be reduced by using a high salt (NaCl) concentration. A higher salt concentration in the elution solution could result in a portion of complementary polynucleotide eluted in the nonretained fraction. However, the nonspecific adsorption of polynucleotides was insignificant in the column packed with DNA-immobilized particles prepared via amination using N-methyl-1,3-propanediamine. The column was effective for microanalysis of sequence-specific DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-2697(02)00507-9 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491002, India.
Utilization of reusable catalysts and reaction media has recently been an area of interest to devise a sustainable approach. Interestingly, photoinduced reversible deactivation radical polymerization (photoRDRP) of glycidyl methacrylate (GMA) is achieved with reusable and magnetically separable nano zero-valent Iron (nZVI). This resulted in well-defined poly(glycidyl methacrylate) (PGMA) (upto 22700 g mol) with a low dispersity (Đ ≤ 1.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.
Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
In the current development of the plastics industry, the use of biodegradable and recycled plastics not only effectively reduces the volume of landfills and incineration but also significantly decreases environmental damage. However, the extensive application of biodegradable polylactic acid (PLA) is limited by its poor toughness and thermal properties. The study introduced recycled linear low-density polyethylene (R-LLDPE) and ethylene-octene copolymer (POE) to modify PLA, primarily based on their excellent toughness and thermal resistance.
View Article and Find Full Text PDFJ Chromatogr Sci
October 2024
College of Biological and Environmental Engineering, Zhejiang Shuren University, 8 Shuren Road, Hangzhou 310015, China.
Int J Biol Macromol
November 2024
Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!