Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae.

DNA Repair (Amst)

Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA.

Published: November 2002

Exo1p is a member of the Rad2p family of structure-specific nucleases that contain conserved N and I nuclease domains. Exo1p has been implicated in numerous DNA metabolic processes, such as recombination, double-strand break repair and DNA mismatch repair (MMR). In this report, we describe in vitro and in vivo characterization of full-length wild-type and mutant forms of Exo1p. Herein, we demonstrate that full-length yeast Exo1p possesses an intrinsic 5'-3' exonuclease activity as reported previously, but also possesses a flap-endonuclease activity. Our study indicates that Exo1p shares similar, but not identical structure-function relationships to other characterized members of the Rad2p family in the N and I nuclease domains. The two exo1p mutants we examined, showed deficiencies for both double-stranded DNA (dsDNA) 5'-3' exonuclease and flap-endonuclease activities. Examining the genetic interaction of these two exo1 mutations with rad27Delta suggest that the Exo1p flap-endonuclease activity and not the dsDNA 5'-3' exonuclease is redundant to Rad27p for viability. In addition, our in vivo results also indicate that many exo1Delta phenotypes are dependent on the complete catalytic activities of Exo1p. Finally, our findings plus those of other investigators suggest that Exo1p functions both in a catalytic and a structural capacity during DNA MMR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1568-7864(02)00114-3DOI Listing

Publication Analysis

Top Keywords

5'-3' exonuclease
12
exo1p
10
rad2p family
8
nuclease domains
8
domains exo1p
8
flap-endonuclease activity
8
dsdna 5'-3'
8
characterization nuclease-dependent
4
nuclease-dependent functions
4
functions exo1p
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!