Uncertainty in measurements of dermal absorption of pesticides.

Risk Anal

Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, 80401, USA.

Published: December 2002

Dermal absorption experiments form an important component in the assessment of risk from exposure to pesticides and other substances. Much dermal absorption data is gathered in rat experiments carried out using a certain standard protocol. Uncertainties in these data arise from many sources and can be quite large. For example, measurements of the systemic absorption of hexaconazole differed by more than an order of magnitude within a single experiment. Two diniconazole studies produced quite different results, due to minor differences in protocol and in chemical formulation. Limits of detection can also prevent accurate measurement when the amounts absorbed are small. These examples illustrate the need for measuring and reporting uncertainties in estimates that are based on these data. The most direct way to estimate uncertainty is to compute the sample standard deviations of replicate measurements. By pooling these estimates across dose and duration groups for which they are similar, the number of degrees of freedom is increased, and more precise confidence intervals can be obtained. In particular, the ratio of upper to lower 95% confidence limits was reduced by as much as ten-fold for hexaconazole, seven-fold for uniconazole, and nearly four-fold for propiconazole.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1539-6924.00281DOI Listing

Publication Analysis

Top Keywords

dermal absorption
12
uncertainty measurements
4
measurements dermal
4
absorption
4
absorption pesticides
4
pesticides dermal
4
absorption experiments
4
experiments form
4
form component
4
component assessment
4

Similar Publications

Ameliorative role of bioactive compounds against lead-induced neurotoxicity.

Neuroscience

January 2025

Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery.

AAPS PharmSciTech

January 2025

Consulting, Fort Collins, Colorado, USA.

Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.

View Article and Find Full Text PDF

Cyclovirobuxine D, a natural compound derived from the medicinal plant Buxus sinica, demonstrates a diverse array of therapeutic benefits, encompassing anti-arrhythmic properties, blood pressure regulation, neuronal protection, and anti-ischemic activity. However, its limited solubility hinders the bioavailability of current oral and injectable formulations, causing considerable adverse reactions and toxicity. In this investigation, we embarked on an unprecedented exploration of the skin penetration potential of cyclovirobuxine D utilizing chemical penetration enhancers and niosomes as innovative strategies to enhance its dermal absorption.

View Article and Find Full Text PDF

The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!