In humans, glucocorticoids are important regulators of adipose tissue distribution and function but circulating cortisol concentrations are normal in most patients with obesity. However, intracellular glucocorticoid levels can be modified by a microsomal enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) expressed mainly in the liver and adipose tissue. Locally generated cortisol within human adipose tissue can induce preadipocyte differentiation, but the relationship between 11beta-HSD1 expression and adipogenesis is unknown. Our present study has shown that in intact, undifferentiated omental (OM) but not subcutaneous (SC) preadipocytes, 11beta-HSD1 acts primarily as a dehydrogenase inactivating cortisol to cortisone. When preadipocytes become "committed" to adipocyte differentiation, oxo-reductase activity predominates generating cortisol. Since glucocorticoids are not only essential for OM preadipocyte differentiation but also inhibit cell proliferation, we postulate that 11beta-HSD1 dehydrogenase activity in "uncommitted" OM preadipocytes may provide an autocrine mechanism to protect preadipocytes from differentiation, in turn facilitating their proliferation. Once early differentiation is initiated, a "switch" to 11beta-HSD1 oxo-reductase activity generates cortisol, thus promoting adipogenesis. The differences in set-point of 11beta-HSD1 activity between OM and SC human adipose tissue may be an important factor in the pathogenesis of visceral obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/erc-120016822 | DOI Listing |
J Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFChin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Immun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Curr Obes Rep
January 2025
Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.
Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!