The review presents our research on the influence of novel thiourea compounds on the biological and genetic effect of gamma-rays using in vivo and in vitro systems of pea. Some novel disubstituted thioureas: o-allylthioureidobenzoic acid (ATB); o-phenylthioureidobenzoic acid (PTB); N-allyl-N'-2-pyridylthiourea (A-2-PTU); N-phenyl-N'-2-pyridylthiourea (P-2-PTU) and 1,4-allylthioureidosalicylic acid (ATUS) were examined. Pea (Pisum sativum L.) seeds from five varieties were used. Experiments in vivo and in vitro were carried under laboratory, greenhouse and field conditions. The data revealed the PTB radioprotective effect demonstrated by: reduction of chromosome aberrations by 2 folds; 50% increase of germinating and surviving plants in M1; twice higher frequency of induced mutations in M2 generation relative to irradiation without PTB treatment; decreasing the level of induced radiation suppression leading to favorable effect on the initial stem and root development of pea. ATB radioprotective effect was demonstrated in vitro by: 25-35% stimulation of organogenesis; by 20-50% increase in bud formation; by 25% stimulation of growth. The effect of A-2-PTU and P-2-PTU depended on the irradiation dose. The protective effect of A-2-PTU is more pronounced at lower irradiation dose, while the effect of P-2-PTU is more pronounced at higher irradiation dose. ATUS, opposite to the other compounds, revealed radiosensibilizing effect by: 16-27% increase in lethality caused by gamma-rays leading to lower number of germinating and surviving plants in M1; 50% decrease in the number of induced mutations in M2 generation; limiting the types of induced mutations at the higher irradiation dose. As a result of the experiments useful mutation forms were obtained, characterized with: earliness, lodging and disease resistance; higher productivity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

irradiation dose
16
induced mutations
12
novel disubstituted
8
disubstituted thioureas
8
pea pisum
8
pisum sativum
8
vivo vitro
8
radioprotective demonstrated
8
germinating surviving
8
surviving plants
8

Similar Publications

[Surgical Management of Metastatic Spinal Tumors].

No Shinkei Geka

January 2025

Department for Neurosurgery, Aichi Cancer Center.

Historically, metastatic spinal tumors have been treated using open spinal fixation, invasive decompressive techniques, and low-dose palliative conventional external beam radiotherapy. As patients with metastatic disease are now living longer, the need for long-term local tumor control is becoming important. Spine stereotactic body radiotherapy has emerged as a valuable alternative option to achieve long-term local tumor control by delivering high doses of radiation to tumors and sparing the spinal cord.

View Article and Find Full Text PDF

Background/purpose: Taste impairment is a common yet complex toxicity of head and neck cancer (HNC) radiotherapy treatment that may affect quality of life of survivors. This study aimed to predict acute and late taste impairment using taste bud bearing tongue mucosa as a new taste-specific organ-at-risk compared to full oral cavity as identified in previous studies.

Materials/methods: Included HNC patients were treated with curative radiotherapy between 2007 and 2022.

View Article and Find Full Text PDF

Purpose: Radiation protection glasses reduce eye lens exposure in Interventional Radiology (IR). However, the protection ratio differs for the lead equivalent content and shape of the lenses. This study aimed to examine factors effective in reducing the lens dose by measuring the protection ratio of scattered radiation due to changes in the surgeon's face orientation, various lead equivalents, and shapes.

View Article and Find Full Text PDF

Deep learning-based quick MLC sequencing for MRI-guided online adaptive radiotherapy: a feasibility study for pancreatic cancer patients.

Phys Med Biol

January 2025

Department of Radiation Oncology, Division of Medical Physics and Engineering​ , UT Southwestern Medical Center, 2280 Inwood Road, Dallas, Texas, 75390-9096, UNITED STATES.

One bottleneck of MRI-guided Online Adaptive Radiotherapy (MRoART) is the time-consuming daily online replanning process. The current leaf sequencing method takes up to 10 minutes, with potential dosimetric degradation and small segment openings that increase delivery time. This work aims to replace this process with a fast deep learning-based method to provide deliverable MLC sequences almost instantaneously, potentially accelerating and enhancing online adaption.

View Article and Find Full Text PDF

The evolution of radiation therapy in Uganda has been a journey marked by significant milestones and persistent challenges. Since the inception of radiotherapy services in 1988-1989, there has been a concerted effort to enhance cancer treatment services. The early years were characterized by foundational developments, such as the installation of the first teletherapy units, low-dose-rate brachytherapy units, and conventional simulators, and the recognition of radiation oncologists and medical physicist professionals laid the groundwork for radiotherapy treatment modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!