Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair.

Anticancer Res

DNA Repair Unit, Mutagenesis Laboratory, Istituto Nazionale Ricerca Cancro, 16132 Genova, Italy.

Published: February 2003

Mammalian cells transfected with the S. cerevisiae APN1 protein acquire resistance to oxidizing agents, the damage of which are mainly repaired via DNA base excision repair (BER). We have recently hypothesized that this effect might be linked to the possible capacity of APN1 to accelerate mammalian BER by its 3' diesterase activity. We have investigated here the effect of pure APN1 protein on BER performed by mouse embryonic fibroblast extracts. No significant acceleration was observed in the repair of either a single AP site cleaved by the bifunctional glycosylase NTH of E. coli or the repair of a single 8-oxoguanine, initiated by the bifunctional glycosylase OGG1. Similarly, no significant effect was observed on the repair of a single U (initiated by the monofunctional glycosylase U DNA glycosylase) or the repair of a single natural abasic site. The inability of APN1 to increase the efficiency of BER initiated by bifunctional glycosylases indicates that removal of 3' blocking fragments is not the rate limiting step of this repair pathway.

Download full-text PDF

Source

Publication Analysis

Top Keywords

repair single
16
apn1 protein
12
cerevisiae apn1
8
dna base
8
base excision
8
excision repair
8
observed repair
8
bifunctional glycosylase
8
initiated bifunctional
8
repair
7

Similar Publications

Introduction: Single-stage bilateral cleft lip repair may require preoperative naso-alveolar molding (NAM) to decrease cleft widths and reposition the premaxilla. Staged operations may be performed in centers or regions without easy access to NAM. This retrospective study aims to examine the national prevalence of single-stage and staged bilateral cleft lip repairs over the past 23 years.

View Article and Find Full Text PDF

Clinicopathologic stratification demonstrates survival differences between endometrial carcinomas with mismatch repair deficiency and no specific molecular profile: a cohort study.

Int J Gynecol Cancer

January 2025

Helsinki University Hospital and University of Helsinki, Department of Obstetrics and Gynecology, Helsinki, Finland; University of Helsinki, Faculty of Medicine, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Department of Pathology, Helsinki, Finland.

Objective: Endometrial carcinomas with mismatch repair deficiency (MMRd) and no specific molecular profile (NSMP) are considered to have intermediate prognoses. However, potential prognostic differences between these molecular subgroups remain unclear due to the lack of standardized control for clinicopathologic factors. This study aims to evaluate outcomes of MMRd and NSMP endometrial carcinomas across guideline-based clinicopathologic risk groups.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Introduction: Vascular trainees are required to have a comprehensive training program, encompassing the completion of clinical, surgical, and research tasks. To fulfill their surgical abilities and performance, sufficient supervised operating time is mandatory. After open vascular procedures, it has been observed that trainee involvement does not lead to detrimental outcomes.

View Article and Find Full Text PDF

Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!