Animal models of oral carcinogenesis have been developed but most use the hamster buccal pouch or rat oral mucosa. With completion of human and murine genome sequencing, the development of a mouse model of oral carcinogenesis may prove useful for future genomic studies of oral carcinogenesis. To achieve this objective, 30 SENCAR mice were initiated by brush application of palatal, buccal and tongue mucosa with 200 nmol 7,12-dimethylbenz[a]anthracene (DMBA) using 3 treatment regimens, and promoted by brush application with 5 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) for a total of 28 weeks. Alternatively, 5 mice were treated with 0.5% 4-nitroquinoline-1-oxide (4NQO) alone by brush application for 28 weeks. There were another 6 control mice treated with vehicle alone. The tumor samples were analyzed for the presence of H-ras codon 61 gene mutations using a mutant-allele-specific amplification-polymerase chain reaction (MASA-PCR) technique. The results showed that among the group of 24 mice initiated with DMBA for 2 or 6 weeks, a range of papilliferous lesions were seen on the buccal mucosa comprising papillomas, papillomas with dysplasia and 7 squamous cell carcinomas (SCC). In those 6 mice initiated with 1 week of DMBA, only papillomas developed. In the 5 mice treated with 4NQO, one developed papillomas with dysplasia and two had SCCs in the tongue mucosa but not the buccal mucosa. Both carcinogens induced codon 61 mutation of the H-ras gene at a high frequency. The results indicated that DMBA/TPA and 4NQO in SENCAR mice reliably produced preneoplastic and malignant oral cavity lesions, which resemble the multistages for human oral carcinogenesis, and targeted to site-specific zones of the oral mucosa, namely the buccal mucosa and tongue, respectively. These results show that SENCAR mice can be used as a unique model of oral carcinogenesis with the potential for detailed molecular studies of neoplastic progression to SCC.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oral carcinogenesis
20
sencar mice
16
mice initiated
12
brush application
12
mice treated
12
buccal mucosa
12
oral
9
mice
9
oral mucosa
8
model oral
8

Similar Publications

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

The first case of paraneoplastic pemphigus positive for IgG autoantibodies against integrin α6.

An Bras Dermatol

January 2025

School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China; Department of Laboratory Medicine, Chronic Disease Research Center, Medical College, Dalian University, Dalian, China. Electronic address:

View Article and Find Full Text PDF

Objective: Evaluate the influence of photobiomodulation in a model of oral carcinogenesis induced by 4-nitroquinoline-n-oxide (4-NQO).

Subjective: Ninety-six Swiss mice received topical application of 1% 4-NQO on tongue dorsum, for 20 weeks. The tongue was subjected to photobiomodulation with red (71.

View Article and Find Full Text PDF

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Instantaneous self-recovery and ultra-low detection limit hydrogel electronic sensor for temporomandibular disorders intelligent diagnosis.

Nat Commun

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Temporomandibular disorders (TMD) intelligent diagnosis promises to elevate clinical efficiency and facilitate timely TMD management for patients. However, development of TMD intelligent diagnostic tools with high accuracy and sensitivity presents challenges, particularly in sensing minute deformations and ensuring rapid self-recovery. Here we report a biocompatible hydrogel electronic sensor with instantaneous self-recovery (within 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!