Pharmacology and biology of corticotropin-releasing factor (CRF) receptors.

Recept Channels

Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Goettingen, Germany.

Published: May 2003

The biology of corticotropin-releasing factor (CRF) finds increasing interest in the scientific community because of the neuromodulatory actions of CRF on brain functions such as learning, anxiety, feeding, and locomotion. Additional actions on immunumodulation and apoptosis have recently been discovered. All actions of CRF are mediated by G protein-coupled receptors, which trigger different, sometimes opposite actions in different regions of the central nervous system. The CRF system exhibits considerable plasticity by the involvement of numerous different ligands, splice variants, and transductional couplings. The generation of multiple splice variants is facilitated by the intron exon structure of the CRF receptor genes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biology corticotropin-releasing
8
corticotropin-releasing factor
8
factor crf
8
actions crf
8
splice variants
8
crf
6
pharmacology biology
4
crf receptors
4
receptors biology
4
crf finds
4

Similar Publications

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

January 2025

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

While corticosteroids, including cortisol, have conserved osmoregulatory functions, the relative involvement of other stress-related hormones in osmoregulatory processes remains unclear. To address this gap, we initially characterized the gill corticotropin-releasing factor (CRF) system of Atlantic salmon (Salmo salar) and then determined: (1) how it is influenced by osmotic disturbances; (2) whether it is affected by cortisol; and (3) which physiological processes it regulates in the gills. Most CRF system components were expressed in the gills, with CRF receptor 2 (crfr2a), CRF binding protein (crfbp1 and crfbp2) and urocortin 2 (ucn2a) being the most abundant.

View Article and Find Full Text PDF

Metabonomics and Transcriptomics Analyses Reveal the Underlying HPA-Axis-Related Mechanisms of Lethality in Exposed to Underwater Noise Pollution.

Int J Mol Sci

November 2024

Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China.

The problem of marine noise pollution has a long history. Strong noise (>120 dB re 1 µPa) will affects the growth, development, physiological responses, and behaviors of fish, and also can induce the stress response, posing a mortal threat. Although many studies have reported that underwater noise may affect the survival of fish by disturbing their nervous system and endocrine system, the underlying causes of death due to noise stimulation remain unknown.

View Article and Find Full Text PDF

Development of a Class A/B Hybrid GPCR System for the Proximity-Assisted Screening of GPCR Ligands.

ACS Chem Biol

January 2025

Department Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg Straße 4, Darmstadt 64287, Germany.

Class A G protein-coupled receptors (GPCRs) are key mediators in numerous signaling pathways and important drug targets for several diseases. A major shortcoming in GPCR ligand screening is the detection limit for weak binding molecules, which is especially critical for poorly druggable GPCRs. Here, we present a proximity-based screening system for class A GPCRs, which adopts the natural two-step activation mechanism of class B GPCRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!