Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The yeast Saccharomyces cerevisiae has four genes, MCK1, MDS1 (RIM11), MRK1, and YOL128c, that encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). A gsk-3 null mutant in which these four genes are disrupted showed growth defects on galactose medium. We isolated several multicopy suppressors of this growth defect. Two of them encoded Msn2p and phosphoglucomutase (PGM). Msn2p is a transcription factor that binds to the stress-response element (STRE). PGM is an enzyme that interconverts glucose-1 phosphate and glucose-6 phosphate and is regulated by Msn2p at the transcriptional level. Expression of the mRNAs of PGM2 and DDR2, whose promoter regions possess STRE sequences, on induction by heat shock or salt stress was reduced not only in an msn2 msn4 (msn2 homologue) double mutant but also in the gsk-3 null mutant. STRE-dependent transcription was greatly inhibited in the gsk-3 null mutant or mck1 mds1 double mutant, and this phenotype was suppressed by the expression of Mck1p but not of a kinase-inactive form of Mck1p. Although Msn2p accumulated in the nucleus of the gsk-3 null mutant as well as in the wild-type strain under various stress conditions, its STRE-binding activity was reduced in extracts prepared from the gsk-3 null mutant or mck1 mds1 double mutant. These results suggest that yeast GSK-3 promotes formation of a complex between Msn2p and DNA, which is required for the proper response to different forms of stress. Because neither Msn2p-GSK-3 complex formation nor GSK-3-dependent phosphorylation of Msn2p could be detected, the regulation of Msn2p by GSK-3 may be indirect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC140246 | PMC |
http://dx.doi.org/10.1091/mbc.e02-05-0247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!