Targeted disruption of the mouse Mel(1b) melatonin receptor.

Mol Cell Biol

Laboratory of Developmental Chronobiology, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.

Published: February 2003

Two high-affinity, G protein-coupled melatonin receptor subtypes have been identified in mammals. Targeted disruption of the Mel(1a) melatonin receptor prevents some, but not all, responses to the hormone, suggesting functional redundancy among receptor subtypes (Liu et al., Neuron 19:91-102, 1997). In the present work, the mouse Mel(1b) melatonin receptor cDNA was isolated and characterized, and the gene has been disrupted. The cDNA encodes a receptor with high affinity for melatonin and a pharmacological profile consistent with its assignment as encoding a melatonin receptor. Mice with targeted disruption of the Mel(1b) receptor have no obvious circadian phenotype. Melatonin suppressed multiunit electrical activity in the suprachiasmatic nucleus (SCN) in Mel(1b) receptor-deficient mice as effectively as in wild-type controls. The neuropeptide, pituitary adenylyl cyclase activating peptide, increases the level of phosphorylated cyclic AMP response element binding protein (CREB) in SCN slices, and melatonin reduces this effect. The Mel(1a) receptor subtype mediates this inhibitory response at moderate ligand concentrations (1 nM). A residual response apparent in Mel(1a) receptor-deficient C3H mice at higher melatonin concentrations (100 nM) is absent in Mel(1a)-Mel(1b) double-mutant mice, indicating that the Mel(1b) receptor mediates this effect of melatonin. These data indicate that there is a limited functional redundancy between the receptor subtypes in the SCN. Mice with targeted disruption of melatonin receptor subtypes will allow molecular dissection of other melatonin receptor-mediated responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC140714PMC
http://dx.doi.org/10.1128/MCB.23.3.1054-1060.2003DOI Listing

Publication Analysis

Top Keywords

melatonin receptor
24
targeted disruption
16
receptor subtypes
16
melatonin
12
receptor
12
mouse mel1b
8
mel1b melatonin
8
functional redundancy
8
redundancy receptor
8
mice targeted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!