The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and is composed of three homologous subunits: alpha, beta, and gamma. Only heteromultimeric channels made of alphabetagammaENaC are efficiently expressed at the cell surface, resulting in maximally amiloride-sensitive currents. To study the relative importance of various regions of the beta- and gamma-subunits for the expression of functional ENaC channels at the cell surface, we constructed hemagglutinin (HA)-tagged beta-gamma-chimeric subunits composed of beta- and gamma-subunit regions and coexpressed them with HA-tagged alphabeta- and alphagamma-subunits in Xenopus laevis oocytes. The whole cell amiloride-sensitive sodium current (DeltaI(ami)) and surface expression of channels were assessed in parallel using the two-electrode voltage-clamp technique and a chemiluminescence assay. Because coexpression of alphagammaENaC resulted in larger DeltaI(ami) and surface expression compared with coexpression of alphabetaENaC, we hypothesized that the gamma-subunit is more important for ENaC trafficking than the beta-subunit. Using chimeras, we demonstrated that channel activity is largely preserved when the highly conserved second cysteine rich domains (CRD2) of the beta- and gamma-subunits are exchanged. In contrast, exchanging the whole extracellular loops of the beta- and the gamma-subunits largely reduced ENaC currents and ENaC expression in the membrane. This indicates that there is limited interchangeability between molecular regions of the two subunits. Interestingly, our chimera studies demonstrated that the intracellular termini and the two transmembrane domains of gammaENaC are more important for the expression of functional channels at the cell surface than the corresponding regions of betaENaC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00385.2002 | DOI Listing |
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFCancer Med
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China.
Background: Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis.
Methods: The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation.
Proteoglycan Res
October 2024
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!