The understanding of the pathophysiology of a large number of cancer types provides a strategy to target cancer cells with minimal effect on normal cells. Protein phosphorylation and dephosphorylation play a pivotal role in intracellular signaling; to regulate signal transduction pathways, there are approximately 700 protein kinases and 100 protein phosphatases encoded within the human genome. In cancer, as well as in other proliferative diseases, unregulated cell proliferation, differentiation and survival frequently results from abnormal protein phosphorylation. Although it is often possible to identify a single kinase that plays a pivotal role in a given disease, the development of drugs based upon protein kinase inhibition has been hampered by unacceptable side effects resulting from a lack of target selectivity. With the growing understanding of the molecular biology of protein tyrosine kinases and the use of structural information, the design of potential drugs directed towards the bind adenosine triphosphate (ATP)-binding site of a single target has become possible. These advances have transferred emphasis away from the identification of potent kinase inhibitors and more towards issues of target selectivity, cellular efficacy, therapeutic effectiveness and tolerability. In this paper, the relationship between molecular biology and drug discovery methods, as utilized for the identification of anticancer drugs, will be illustrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0959-8049(02)80599-8 | DOI Listing |
Alzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Background: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.
View Article and Find Full Text PDFBackground: Alzheimer's disease is the most dreaded multifactorial neurological illness for which there is currently no known treatment. Although the exact cause of AD is still unknown, several factors related to lifestyle, genetics, and environment are known to have a significant role in the disease's development. Alzheimer's disease is characterized by neuronal loss, neurofibrillary tangles, and senile plaques.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!